This article describes different methods of organizing robotic services for smart cities using secure encrypted decentralized technologies and market mechanisms—as opposed to models based on centralized solutions based (or not) on using cloud services and stripping citizens of the control of their own data. The basis of the proposed methods is the Ethereum decentralized computer with the mechanism of smart contracts. In this work, special attention is paid to the integration of technical and economic information into one network of transactions, which allows creating a unified way of interaction between robots—the robot economy. Three possible scenarios of robotic services for smart cities based on the economy of robots are presented: unmanned aerial vehicles (UAVs), environmental monitoring, and smart factories. In order to demonstrate the feasibility of the proposed scenarios, three experiments are presented and discussed. Our work shows that the Ethereum network can provide, through smart contracts and their ability to activate programs to interact with the physical world, an effective and practical way to manage robot services for smart cities.