Jacobian-free Newton-Krylov methods: a survey of approaches and applications
暂无分享,去创建一个
[1] R. Pletcher,et al. Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.
[2] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[3] D. A. Knoll,et al. New physics-based preconditioning of implicit methods for non-equilibrium radiation diffusion , 2003 .
[4] Andrzej A. Wyszogrodzki,et al. An efficient physics-based preconditioner for the fully implicit solution of small-scale thermally driven atmospheric flows , 2003 .
[5] D. A. Knoll,et al. A 2D high-ß Hall MHD implicit nonlinear solver , 2003 .
[6] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[7] L. Margolin,et al. On balanced approximations for time integration of multiple time scale systems , 2003 .
[8] D. Knoll,et al. Hall MHD effects on the 2D Kelvin–Helmholtz/tearing instability , 2003 .
[9] David E. Keyes,et al. Pseudotransient Continuation and Differential-Algebraic Equations , 2003, SIAM J. Sci. Comput..
[10] D. Keyes,et al. Non‐linear additive Schwarz preconditioners and application in computational fluid dynamics , 2002 .
[11] Dana A. Knoll,et al. An Implicit Nonlinearly Consistent Method for the Two-Dimensional Shallow-Water Equations with Coriolis Force , 2002 .
[12] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[13] P. Drazin. KELVIN–HELMHOLTZ INSTABILITY , 2002 .
[14] J. Brackbill,et al. The Kelvin–Helmholtz instability, differential rotation, and three-dimensional, localized, magnetic reconnection , 2002 .
[15] Homer F. Walker,et al. On backtracking failure in newton-GMRES methods with a demonstration for the navier-stokes equations , 2002 .
[16] J. Brackbill,et al. An implicit particle-in-cell method for granular materials , 2002 .
[17] D. Knoll,et al. Magnetic reconnection in the two-dimensional Kelvin-Helmholtz instability. , 2002, Physical review letters.
[18] Dana A. Knoll,et al. An Implicit, Nonlinear Reduced Resistive MHD Solver , 2002 .
[19] K. Banas,et al. A Newton–Krylov solver with multiplicative Schwarz preconditioning for finite element compressible flow simulations , 2002 .
[20] Robert E. Hayes,et al. Modelling the three-way catalytic converter with mechanistic kinetics using the Newton–Krylov method on a parallel computer , 2002 .
[21] M. D. Tidriri,et al. Development and Study of Newton-Krylov-Schwarz Algorithms , 2001 .
[22] J. Brackbill,et al. The Kelvin-Helmholtz Instability, Differential Rotation,and 3-D, Localized, Magnetic Reconnection , 2001 .
[23] M. Y. Hussaini,et al. An efficient implicit discontinuous spectral Galerkin method , 2001 .
[24] Dana A. Knoll,et al. Application of the Newton–Krylov Method to Geophysical Flows , 2001 .
[25] William J. Rider,et al. Nonlinear convergence, accuracy, and time step control in nonequilibrium radiation diffusion , 2001 .
[26] Dinshaw S. Balsara,et al. Fast and accurate discrete ordinates methods for multidimensional radiative transfer. Part I, basic methods , 2001 .
[27] D. Mavriplis. An assessment of linear versus non-linear multigrid methods for unstructured mesh solvers , 2001 .
[28] W. B. VanderHeyden,et al. CartaBlanca— a pure-Java, component-based systems simulation tool for coupled non-linear physics on unstructured grids , 2001, JGI '01.
[29] C. Oliver. Scientific Discovery through Advanced Computing , 2001, International Conference on Computational Science.
[30] William Gropp,et al. High-performance parallel implicit CFD , 2001, Parallel Comput..
[31] Lois C. McInnes,et al. Parallel simulation of compressible flow using automatic differentiation and PETSc , 2001, Parallel Comput..
[32] D. Knoll,et al. A bounce-averaged ion Fokker–Planck code for Penning fusion devices , 2001 .
[33] William J. Rider,et al. On consistent time-integration methods for radiation hydrodynamics in the equilibrium diffusion limit: low-energy-density regime , 2001 .
[34] Dana A. Knoll,et al. On Preconditioning Newton-Krylov Methods in Solidifying Flow Applications , 2001, SIAM J. Sci. Comput..
[35] Michael Pernice,et al. A Multigrid-Preconditioned Newton-Krylov Method for the Incompressible Navier-Stokes Equations , 2001, SIAM J. Sci. Comput..
[36] C. T. Kelley,et al. An Aggregation-Based Domain Decomposition Preconditioner for Groundwater Flow , 2001, SIAM J. Sci. Comput..
[37] Carol S. Woodward,et al. Preconditioning Strategies for Fully Implicit Radiation Diffusion with Material-Energy Transfer , 2001, SIAM J. Sci. Comput..
[38] Y. Saad,et al. Iterative solution of linear systems in the 20th century , 2000 .
[39] Luis Rosa. Fokker-Planck modeling of spherical inertial electrostatic, virtual-cathode fusion systems , 2000 .
[40] D. Knoll,et al. Energy gain calculations in Penning fusion systems using a bounce-averaged Fokker–Planck model , 2000 .
[41] J. Brackbill,et al. Transient magnetic reconnection and unstable shear layers. , 2000, Physical review letters.
[42] Rodman R. Linn,et al. Coupled Atmospheric Fire Modeling Employing the Method of Averages , 2000 .
[43] David E. Keyes,et al. Using automatic differentiation for second-order matrix-free methods in PDE-constrained optimization , 2000 .
[44] D. A. Knoll,et al. On Newton-Krylov Multigrid Methods for the Incompressible Navier-Stokes Equations , 2000 .
[45] Stamatis Vassiliadis,et al. Parallel Computer Architecture , 2000, Euro-Par.
[46] G. Porter,et al. Detailed comparison of simulated and measured plasma profiles in the scrape-off layer and edge plasma of DIII-D , 2000 .
[47] Ning Qin,et al. A matrix-free preconditioned Newton/GMRES method for unsteady Navier-Stokes solutions , 2000 .
[48] William J. Rider,et al. Physics-Based Preconditioning and the Newton-Krylov Method for Non-equilibrium Radiation Diffusion , 2000 .
[49] M. Tidriri,et al. Globalized Newton-Krylov-Schwarz Algorithms and Software for Parallel Implicit CFD , 2000, Int. J. High Perform. Comput. Appl..
[50] Ronald H. Cohen,et al. Low-to-high confinement transition simulations in divertor geometry , 2000 .
[51] Stefano Micheletti,et al. A Discretization Scheme for an Extended Drift-Diffusion Model Including Trap-Assisted Phenomena , 2000 .
[52] E. Suetomi,et al. Two-dimensional fluid simulation of plasma reactors for the immobilization of krypton , 2000 .
[53] George H. Miley,et al. An implicit energy-conservative 2D Fokker-Planck algorithm: II. Jacobian-free Newton—Krylov solver , 2000 .
[54] D. A. Knoll,et al. An Implicit Energy-Conservative 2D Fokker—Planck Algorithm , 2000 .
[55] William J. Rider,et al. A Multigrid Preconditioned Newton-Krylov Method , 1999, SIAM J. Sci. Comput..
[56] M. Sarkis,et al. A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..
[57] William J. Rider,et al. An efficient nonlinear solution method for non-equilibrium radiation diffusion , 1999 .
[58] William J. Rider,et al. Time Step Size Selection for Radiation Diffusion Calculations , 1999 .
[59] D. Knoll,et al. A NEW NONLINEAR SOLUTION METHOD FOR PHASE-CHANGE PROBLEMS , 1999 .
[60] William J. Rider,et al. A Multigrid Newton-Krylov Method for Multimaterial Equilibrium Radiation Diffusion , 1999 .
[61] Dana A. Knoll,et al. A Multilevel Iterative Field Solver for Implicit, Kinetic, Plasma Simulation , 1999 .
[62] Danesh K. Tafti,et al. Performance Enhancement on Microprocessors with Hierarchical Memory Systems for Solving Large Sparse Linear Systems , 1999, Int. J. High Perform. Comput. Appl..
[63] STEVE SCHAFFER,et al. A Semicoarsening Multigrid Method for Elliptic Partial Differential Equations with Highly Discontinuous and Anisotropic Coefficients , 1998, SIAM J. Sci. Comput..
[64] Cass T. Miller,et al. Inexact Newton methods and the method of lines for solving Richards' equation in two space dimensions , 1998 .
[65] Anoop Gupta,et al. Parallel computer architecture - a hardware / software approach , 1998 .
[66] Dana A. Knoll,et al. An Improved Convection Scheme Applied to Recombining Divertor Plasma Flows , 1998 .
[67] C. Kelley,et al. Convergence Analysis of Pseudo-Transient Continuation , 1998 .
[68] A. Mauer,et al. : An Extensible Automatic , 1997 .
[69] R. Zanino. Advanced Finite Element Modeling of the Tokamak Plasma Edge , 1997 .
[70] D. Kaushik,et al. Prospects for CFD on Petaflops Systems , 1997 .
[71] Homer F. Walker,et al. An Inexact Newton Method for Fully Coupled Solution of the Navier-Stokes Equations with Heat and Mass Transport , 1997 .
[72] V. A. Mousseau,et al. Fully Implicit Kinetic Solution of Collisional Plasmas , 1997 .
[73] John N. Shadid,et al. Efficient Parallel Computation of Unstructured Finite Element Reacting Flow Solutions , 1997, Parallel Comput..
[74] Mary F. Wheeler,et al. A parallel, implicit, cell‐centered method for two‐phase flow with a preconditioned Newton–Krylov solver , 1997 .
[75] Dana A. Knoll,et al. High-order scheme implementation using Newton-Krylov solution methods , 1997 .
[76] Moulay D. Tidriri,et al. Preconditioning Techniques for the Newton-Krylov Solution of Compressible Flows , 1997 .
[77] Martin H. Gutknecht,et al. Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.
[78] D. Knoll,et al. Plasma recombination and molecular effects in tokamak divertors and divertor simulators , 1996 .
[79] S. Ashby,et al. A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations , 1996 .
[80] D. P. Young,et al. Parallel Newton-Krylov-Schwarz Algorithms for the Transonic Full Potential Equation , 1996, SIAM J. Sci. Comput..
[81] David E. Keyes,et al. Newton-Krylov Methods for Low-Mach-Number Compressible Combustion , 1996 .
[82] D. Keyes,et al. NEWTON-KRYLOV-SCHWARZ: AN IMPLICIT SOLVER FOR CFD , 1995 .
[83] Peter A. Forsyth,et al. Robust linear and nonlinear strategies for solution of the transonic Euler equations , 1995 .
[84] D. A. Knoll,et al. Newton-Krylov methods applied to a system of convection-diffusion-reaction equations , 1995 .
[85] Max Planitz,et al. Acta numerica 1993 , edited by A. Iserles. Pp. 326. £24.95 1993. ISBN 0-521-44356-3 (hardback) (Cambridge University Press) - Acta numerica 1994 , edited by A. Iserles. Pp. 572. £27.95 1994. ISBN 0-521-46181-2 (hardback) (Cambridge University Press) , 1995, The Mathematical Gazette.
[86] W. K. Anderson,et al. Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids , 1995 .
[87] Dimitri J. Mavriplis,et al. Agglomeration multigrid for two-dimensional viscous flows , 1995 .
[88] R. Vesey,et al. A Two-Dimensional Finite Element Model of the Edge Plasma , 1995 .
[89] P. McHugh,et al. An Inexact Newton Algorithm for Solving the Tokamak Edge Plasma Fluid Equations on a Multiply-Connected Domain , 1995 .
[90] Dana A. Knoll,et al. Fully coupled finite volume solutions of the incompressible Navier–Stokes and energy equations using an inexact Newton method , 1994 .
[91] E. M. Epperlein,et al. Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .
[92] David E. Keyes,et al. Towards Polyalgorithmic Linear System Solvers for Nonlinear Elliptic Problems , 1994, SIAM J. Sci. Comput..
[93] Homer F. Walker,et al. Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..
[94] Yousef Saad,et al. Convergence Theory of Nonlinear Newton-Krylov Algorithms , 1994, SIAM J. Optim..
[95] John N. Shadid,et al. A Comparison of Preconditioned Nonsymmetric Krylov Methods on a Large-Scale MIMD Machine , 1994, SIAM J. Sci. Comput..
[96] Dimitri J. Mavriplis,et al. AGGLOMERATION MULTIGRID FOR THE THREE-DIMENSIONAL EULER EQUATIONS , 1994 .
[97] Dana A. Knoll,et al. Inexact Newton's method solutions to the incompressible Navier-Stokes and energy equations using standard and matrix-free implementations , 1993 .
[98] A. Iserles,et al. Acta numerica 1992 , edited by A. Iserles. Pp. 407. £19.95 1992. ISBN 0-521-41026-6 (Cambridge University Press) , 1993, The Mathematical Gazette.
[99] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[100] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[101] D. A. Knoll,et al. A direct Newton solver for the two-dimensional tokamak edge plasma fluid equations , 1993 .
[102] Eugene L. Allgower,et al. Continuation and path following , 1993, Acta Numerica.
[103] P. McHugh,et al. NEWEDGE: a 2D fully implicit edge plasma fluid code for advanced physics and complex geometries , 1992 .
[104] J. Milovich,et al. A fully implicit, time dependent 2-D fluid code for modeling tokamak edge plasmas , 1992 .
[105] Lloyd N. Trefethen,et al. How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..
[106] Kathryn Turner,et al. Efficient High Accuracy Solutions with GMRES(m) , 1992, SIAM J. Sci. Comput..
[107] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[108] Y. Saad,et al. On acceleration methods for coupled nonlinear elliptic systems , 1991 .
[109] G. Golub,et al. Iterative solution of linear systems , 1991, Acta Numerica.
[110] R. Bowers,et al. Numerical Modeling in Applied Physics and Astrophysics , 1991 .
[111] Yousef Saad,et al. Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..
[112] V. Venkatakrishnan,et al. Viscous computations using a direct solver , 1990 .
[113] W. M. Coughran,et al. The alternate-block-factorization procedure for systems of partial differential equations , 1989 .
[114] P. Brown,et al. Reduced storage matrix methods in stiff ODE systems , 1989, Conference on Numerical Ordinary Differential Equations.
[115] David E. Keyes,et al. Domain decomposition methods for the parallel computation of reacting flows , 1989 .
[116] Suhas V. Patankar,et al. Robust semidirect finite difference methods for solving the Navier–Stokes and energy equations , 1989 .
[117] Gene H. Golub,et al. Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..
[118] P. Brown. A local convergence theory for combined inexact-Newton/finite-difference projection methods , 1987 .
[119] David E. Keyes,et al. Numerical Solution of Two-Dimensional Axisymmetric Laminar Diffusion Flames , 1986 .
[120] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[121] P. Brown,et al. Matrix-free methods for stiff systems of ODE's , 1986 .
[122] G. Raithby,et al. A multigrid method based on the additive correction strategy , 1986 .
[123] Michael L. Norman,et al. Implicit Adaptive-Grid Radiation Hydrodynamics , 1985 .
[124] William Gropp,et al. A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation , 1985, PP.
[125] R.M.M. Mattheij,et al. On the solution of nonlinear two-point boundary value problems on successively refined grids☆ , 1985 .
[126] R. Glowinski,et al. Numerical Methods for Nonlinear Variational Problems , 1985 .
[127] B. V. Leer,et al. Experiments with implicit upwind methods for the Euler equations , 1985 .
[128] T. Chan,et al. Nonlinearly Preconditioned Krylov Subspace Methods for Discrete Newton Algorithms , 1984 .
[129] C. W. Gear,et al. Iterative Solution of Linear Equations in ODE Codes , 1983 .
[130] G. K. Leaf,et al. Fully-coupled solution of pressure-linked fluid flow equations , 1983 .
[131] G. D. Davis. Natural convection of air in a square cavity: A bench mark numerical solution , 1983 .
[132] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[133] P. Bjørstad. Fast Numerical Solution of the Biharmonic Dirichlet Problem on Rectangles , 1983 .
[134] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[135] Mitchell D. Smooke,et al. Solution of burner-stabilized premixed laminar flames by boundary value methods , 1982 .
[136] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[137] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[138] Khalid Aziz,et al. A Generalization of the Additive Correction Methods for the Iterative Solution of Matrix Equations , 1973 .
[139] A. A. Amsden,et al. A numerical fluid dynamics calculation method for all flow speeds , 1971 .
[140] H. Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .
[141] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[142] F. Hoseini. A Parallel , 1862, Hall's journal of health.
[143] Yair Shapira,et al. Iterative Methods for Large Sparse Linear Systems , 2006 .
[144] Long Chen. INTRODUCTION TO MULTIGRID METHODS , 2005 .
[145] David E. Keyes,et al. Nonlinearly Preconditioned Inexact Newton Algorithms , 2002, SIAM J. Sci. Comput..
[146] D. Zingg,et al. Newton-Krylov Algorithm for Aerodynamic Design Using the Navier-Stokes Equations , 2002 .
[147] C. Kelley,et al. Pseudo-transient continuation and differential-algebraic equations , 2002 .
[148] Xiao-Chuan Cai,et al. RASHO: a restricted additive Schwarz preconditioner with harmonic overlap. , 2002 .
[149] Glenn E. Hammond,et al. Modeling multicomponent reactive transport on parallel computers using Jacobian-Free Newton Krylov with operator-split preconditioning , 2002 .
[150] D. Keyes,et al. Nonlinear additive Schwarz preconditioners and applications in computational fluid dynamics , 2002 .
[151] A. Hindmarsh,et al. Application of parallel implicit methods to edge-plasma numerical simulations , 2002 .
[152] Philippe Geuzaine,et al. Newton-Krylov Strategy for Compressible Turbulent Flows on Unstructured Meshes , 2001 .
[153] GeorgeBirosand Omar Ghattas,et al. A Lagrange-Newton-Krylov-Schur Method for PDE-ConstrainedOptimization , 2000 .
[154] David E. Keyes,et al. A Nonlinear Additive Schwarz Preconditioned Inexact Newton Method for Shocked Duct Flow , 2000 .
[155] D. Knoll,et al. A Multigrid Newton-Krylov Solver for Non-linear Systems , 2000 .
[156] David M. Nicol,et al. Automated Parallelization of Discrete State-Space Generation , 1997, J. Parallel Distributed Comput..
[157] O. Ghattas,et al. Parallel Netwon-Krylov Methods for PDE-Constrained Optimization , 1999, ACM/IEEE SC 1999 Conference (SC'99).
[158] Dana A. Knoll,et al. Enhanced Nonlinear Iterative Techniques Applied to a Nonequilibrium Plasma Flow , 1998, SIAM J. Sci. Comput..
[159] Moulay D. Tidriri,et al. Hybrid Newton-krylov/domain Decomposition Methods for Compressible Flows , 1998 .
[160] Charbel Farhat,et al. A Minimum Overlap Restricted Additive Schwarz Preconditioner and Applications in 3D Flow Simulations , 1998 .
[161] Homer F. Walker,et al. NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..
[162] D. Keyes. How Scalable is Domain Decomposition in Practice , 1998 .
[163] Cornelis W. Oosterlee,et al. An Evaluation of Parallel Multigrid as a Solver and a Preconditioner for Singularly Perturbed Problems , 1998, SIAM J. Sci. Comput..
[164] Ii A.R. Larzelere,et al. Creating simulation capabilities , 1998 .
[165] David E. Keyes,et al. Application of Newton-Krylov-Schwarz Algorithm to Low-Mach-Number Compressible Combustion , 1998 .
[166] D. A. Knoll,et al. An e $ cient nonlinear solution method for non-equilibrium radiation di ! usion , 1998 .
[167] David E. Keyes,et al. On the Interaction of Architecture and Algorithm in the Domain-based Parallelization of an Unstructu , 1997 .
[168] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[169] D. E. Keyes,et al. Newton-Krylov-Schwarz methods : Interfacing sparse linear solvers with nonlinear applications , 1996 .
[170] Homer F. Walker,et al. Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..
[171] M. Tidriri. SCHWARZ-BASED ALGORITHMS FOR COMPRESSIBLE FLOWS , 1996 .
[172] Juan C. Meza,et al. A Multigrid Preconditioner for the Semiconductor Equations , 1996, SIAM J. Sci. Comput..
[173] Charbel Farhat,et al. Schwarz Methods for the Unsteady Compressible Navier-Stokes Equations on Unstructured Meshes , 1996 .
[174] P. McHugh,et al. Simulation of dense recombining divertor plasmas with a Navier–Stokes neutral transport model , 1996 .
[175] D. Knoll,et al. Simulation of the Alcator C-Mod Divertor with an Improved Neutral Fluid Model , 1996 .
[176] David E. Keyes,et al. Aerodynamic applications of Newton- Krylov-Schwarz solvers , 1995 .
[177] Dana A. Knoll,et al. 5. Newton-Krylov-Schwarz Methods Applied to the Tokamak Edge Plasma Fluid Equations , 1995, Domain-Based Parallelism and Problem Decomposition Methods in Computational Science and Engineering.
[178] William Gropp,et al. Newton-Krylov-Schwarz Methods in CFD , 1994 .
[179] W. K. Anderson,et al. An implicit upwind algorithm for computing turbulent flows on unstructured grids , 1994 .
[180] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[181] H. V. D. Vorst,et al. A comparison of some GMRES-like methods , 1992 .
[182] C. Bischof,et al. ADIFOR-Generating Derivative Codes from Fortran Programs , 1992 .
[183] R. W. Gould,et al. Plasma collection by an obstacle , 1989 .
[184] Stephen F. McCormick,et al. Multilevel adaptive methods for partial differential equations , 1989, Frontiers in applied mathematics.
[185] V. Venkatakrishnan. Newton solution of inviscid and viscous problems , 1988 .
[186] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[187] Elaine S. Oran,et al. Numerical Simulation of Reactive Flow , 1987 .
[188] J. Brackbill,et al. Multiple time scales , 1985 .
[189] J. Reid. Large Sparse Sets of Linear Equations , 1973 .
[190] F. Saibi,et al. private communication , 1969 .
[191] Michael Pernice,et al. A Hybrid Multigrid Method for the Steady-state Incompressible Navier-stokes Equations * , 2022 .
[192] Jim E. Jones,et al. Newton–Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems , 2001 .
[193] S. Tsynkov,et al. Journal of Computational Physics , 2022 .