Copper doped TiO2 nanoparticles characterized by X-ray absorption spectroscopy, total scattering, and powder diffraction--a benchmark structure-property study.

Metal functionalized nanoparticles potentially have improved properties e.g. in catalytic applications, but their precise structures are often very challenging to determine. Here we report a structural benchmark study based on tetragonal anatase TiO2 nanoparticles containing 0-2 wt% copper. The particles were synthesized by continuous flow synthesis under supercritical water-isopropanol conditions. Size determination using synchrotron PXRD, TEM, and X-ray total scattering reveals 5-7 nm monodisperse particles. The precise dopant structure and thermal stability of the highly crystalline powders were characterized by X-ray absorption spectroscopy and multi-temperature synchrotron PXRD (300-1000 K). The combined evidence reveals that copper is present as a dopant on the particle surfaces, most likely in an amorphous oxide or hydroxide shell. UV-VIS spectroscopy shows that copper presence at concentrations higher than 0.3 wt% lowers the band gap energy. The particles are unaffected by heating to 600 K, while growth and partial transformation to rutile TiO2 occur at higher temperatures. Anisotropic unit cell behavior of anatase is observed as a consequence of the particle growth (a decreases and c increases).

[1]  Zheshen Li,et al.  Surface properties and photocatalytic activity of nanocrystalline titania films , 2008 .

[2]  Chattopadhyay,et al.  Effect of crystal size reduction on lattice symmetry and cooperative properties. , 1995, Physical review. B, Condensed matter.

[3]  Fuzhi Huang,et al.  Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. , 2010, ACS nano.

[4]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[5]  J. S. Pedersen,et al.  Anisotropic Crystal Growth Kinetics of Anatase TiO2 Nanoparticles Synthesized in a Nonaqueous Medium , 2010 .

[6]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[7]  Keisuke Asai,et al.  Band gap narrowing of titanium dioxide by sulfur doping , 2002 .

[8]  Cyril Aymonier,et al.  Review of supercritical fluids in inorganic materials science , 2006 .

[9]  Xingwang Zhang,et al.  One step preparation of visible-light responsive Fe–TiO2 coating photocatalysts by MOCVD , 2008 .

[10]  J. Moodera,et al.  Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO2 thin films above room temperature , 2002 .

[11]  Kunio Arai,et al.  Rapid and Continuous Hydrothermal Crystallization of Metal Oxide Particles in Supercritical Water , 1992 .

[12]  B. Iversen,et al.  Continuous flow supercritical water synthesis and crystallographic characterization of anisotropic boehmite nanoparticles , 2010 .

[13]  B. Iversen,et al.  Rapid one-step low-temperature synthesis of nanocrystalline γ-Al2O3. , 2011, Angewandte Chemie.

[14]  J. Wu,et al.  A visible-light response vanadium-doped titania nanocatalyst by sol–gel method , 2004 .

[15]  B. Iversen,et al.  Highly controlled crystallite size and crystallinity of pure and iron-doped anatase-TiO_2 nanocrystals by continuous flow supercritical synthesis , 2013 .

[16]  Manh Cuong Tran,et al.  Synthesis and characterization of TiO 2 photocatalyst doped by transition metal ions (Fe 3+ , Cr 3+ and V 5+ ) , 2010 .

[17]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[18]  J. S. Pedersen,et al.  Critical size of crystalline ZrO(2) nanoparticles synthesized in near- and supercritical water and supercritical isopropyl alcohol. , 2008, ACS nano.

[19]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[20]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[21]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  H. Jang,et al.  Effect of Particle Size and Phase Composition of Titanium Dioxide Nanoparticles on the Photocatalytic Properties , 2001 .

[23]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[24]  Man Sig Lee,et al.  Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent , 2005 .

[25]  B. Ravel,et al.  ATOMS: crystallography for the X-ray absorption spectroscopist. , 2001, Journal of synchrotron radiation.

[26]  Simon J. L. Billinge,et al.  PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data , 2004 .

[27]  Adriana Zaleska,et al.  Doped-TiO2: A Review , 2008 .

[28]  B. Iversen,et al.  Comparison of T-piece and concentric mixing systems for continuous flow synthesis of anatase nanoparticles in supercritical isopropanol/water , 2009 .

[29]  G. Bae,et al.  Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by chemical vapor condensation method with different precursor concentration and residence time. , 2011, Journal of colloid and interface science.

[30]  B. Iversen,et al.  Time-resolved in situ synchrotron X-ray study and large-scale production of magnetite nanoparticles in supercritical water. , 2009, Angewandte Chemie.

[31]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[32]  V. Colvin,et al.  Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area. , 2006, Journal of colloid and interface science.

[33]  J. S. Pedersen,et al.  Supercritical Propanol–Water Synthesis and Comprehensive Size Characterisation of Highly Crystalline anatase TiO2 Nanoparticles , 2006 .

[34]  J. S. Pedersen,et al.  Characterization of nanosized partly crystalline photocatalysts , 2004 .

[35]  M. S. Akhtar,et al.  Synthesis, characterization and application of sol–gel derived mesoporous TiO2 nanoparticles for dye-sensitized solar cells , 2010 .

[36]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[37]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[38]  P. Knauth,et al.  EXAFS study of dopant segregation (Zn, Nb) in nanocrystalline anatase (TiO2) , 2003 .

[39]  T. Pham,et al.  Fabrication of a silicon nanostructure-based light emitting device , 2010 .

[40]  S. G. Kumar,et al.  Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. , 2011, The journal of physical chemistry. A.

[41]  H. Uhm,et al.  Band gap narrowing of TiO2 by nitrogen doping in atmospheric microwave plasma , 2005 .

[42]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[43]  G. Lu,et al.  Hydrothermal seeded synthesis of mesoporous titania for application in dye-sensitised solar cells (DSSCs) , 2004 .

[44]  K. Arai,et al.  Hydrothermal Synthesis of Metal Oxide Nanoparticles at Supercritical Conditions , 2000 .

[45]  H. Fu,et al.  Effect of surface species on Cu-TiO2 photocatalytic activity , 2008 .

[46]  N. Farhangi,et al.  Growing TiO2 nanowires on the surface of graphene sheets in supercritical CO2: characterization and photoefficiency , 2012, Nanotechnology.

[47]  G. Cao,et al.  Titania Particle Size Effect on the Overall Performance of Dye-Sensitized Solar Cells , 2007 .

[48]  T. Ressler WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. , 1998, Journal of synchrotron radiation.

[49]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[50]  Tae Geun Kim,et al.  Synthesis of Cu-Doped TiO2 Nanorods with Various Aspect Ratios and Dopant Concentrations , 2010 .