LiDAR Remote Sensing of Vegetation Biomass

Accurate estimates of vegetation biomass are critical for calibrating and validating biogeochemical models (Hurtt et al. 2010), quantifying carbon fluxes from land use and land cover change (Shukla et al. 1990; Houghton et al. 2001), and supporting the United Nations Framework Convention on Climate Change (UNFCCC) program to reduce deforestation and forest degradation (Reducing Emissions from Deforestation and Forest Degradation) (Asner 2009). For instance, it was argued that at least half of the uncertainty in the estimates of emissions of carbon from land use change results from uncertain estimates of biomass density (Houghton 2005; Houghton et al. 2009). CONTENTS

[1]  Robert G. Knox,et al.  The use of waveform lidar to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire , 2006 .

[2]  F. Zhao,et al.  Allometric equation choice impacts lidar-based forest biomass estimates: A case study from the Sierra National Forest, CA , 2012 .

[3]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[4]  E. Næsset,et al.  Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser , 2008 .

[5]  R. Nelson,et al.  Determining forest canopy characteristics using airborne laser data , 1984 .

[6]  Yude Pan,et al.  BIOMASS AND NPP ESTIMATION FOR THE MID-ATLANTIC REGION (USA) USING PLOT-LEVEL FOREST INVENTORY DATA , 2001 .

[7]  K. Lim,et al.  Lidar remote sensing of biophysical properties of tolerant northern hardwood forests , 2003 .

[8]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[9]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[10]  Ross Nelson,et al.  Exploring LiDAR–RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR , 2007 .

[11]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[12]  David B. Clark,et al.  APPLICATION OF 1-M AND 4-M RESOLUTION SATELLITE DATA TO ECOLOGICAL STUDIES OF TROPICAL RAIN FORESTS , 2004 .

[13]  Gregory P. Asner,et al.  Tropical forest carbon assessment: integrating satellite and airborne mapping approaches , 2009 .

[14]  Geoffrey B. West,et al.  Yes, West, Brown and Enquist"s model of allometric scaling is both mathematically correct and biologically relevant , 2005 .

[15]  J. Shukla,et al.  Amazon Deforestation and Climate Change , 1990, Science.

[16]  Laurent Ferro-Famil,et al.  Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[17]  K. Niklas Size-dependent Allometry of Tree Height, Diameter and Trunk-taper , 1995 .

[18]  Patrick D. Johnson,et al.  Investigating RaDAR–LiDAR synergy in a North Carolina pine forest , 2007 .

[19]  W. Ju,et al.  Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing. , 2007, Journal of environmental management.

[20]  C. Woodcock,et al.  Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar , 2011 .

[21]  R. Dubayah,et al.  Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships , 2003 .

[22]  Fábio Guimarães Gonçalves,et al.  Vegetation profiles in tropical forests from multibaseline interferometric synthetic aperture radar, field, and lidar measurements , 2009 .

[23]  G. Asner,et al.  A universal airborne LiDAR approach for tropical forest carbon mapping , 2011, Oecologia.

[24]  Qi Chen Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry , 2010 .

[25]  R. Dubayah,et al.  Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest , 2008 .

[26]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[27]  Sandra A. Brown,et al.  State and change in carbon pools in the forests of tropical Africa , 1998 .

[28]  Richard A. Houghton,et al.  The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates , 2001 .

[29]  K. Lim,et al.  Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators , 2004 .

[30]  Alex C. Lee,et al.  Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia , 2006 .

[31]  David Saah,et al.  Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates , 2012 .

[32]  G. Asner,et al.  Fusing small-footprint waveform LiDAR and hyperspectral data for canopy-level species classification and herbaceous biomass modeling in savanna ecosystems , 2011 .

[33]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[34]  Richard G. Oderwald,et al.  Technical note: Canopy height models and airborne lasers to estimate forest biomass: Two problems , 2000 .

[35]  J. Reitberger,et al.  3D segmentation of single trees exploiting full waveform LIDAR data , 2009 .

[36]  Thuy Le Toan,et al.  Relating Radar Remote Sensing of Biomass to Modelling of Forest Carbon Budgets , 2004 .

[37]  J. Boone Kauffman,et al.  Allometric Models for Predicting Aboveground Biomass in Two Widespread Woody Plants in Hawaii , 2008 .

[38]  Barbara Koch,et al.  Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment , 2010 .

[39]  A. Lugo,et al.  Estimating biomass and biomass change of tropical forests , 1997 .

[40]  Shilong Piao,et al.  Satellite-based estimation of biomass carbon stocks for northeast China's forests between 1982 and 1999 , 2007 .

[41]  Göran Ståhl,et al.  Estimating Quebec provincial forest resources using ICESat/GLAS , 2009 .

[42]  Peter R. J. North,et al.  Lidar Remote Sensing for Biomass Assessment , 2012 .

[43]  Florian Siegert,et al.  Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[44]  Ross Nelson,et al.  A Portable Airborne Laser System for Forest Inventory , 2003 .

[45]  M. Lefsky,et al.  Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of high biomass and persistent cloud , 2012 .

[46]  G. Qiu,et al.  Accurate estimation of forest carbon stocks by 3-D remote sensing of individual trees. , 2003, Environmental science & technology.

[47]  Fabian Ewald Fassnacht,et al.  Forest structure modeling with combined airborne hyperspectral and LiDAR data , 2012 .

[48]  S. Fleck,et al.  3D-laser scanning: A non-destructive method for studying above-ground biomass and growth of juvenile trees , 2011 .

[49]  Y. Hu,et al.  Mapping the height and above‐ground biomass of a mixed forest using lidar and stereo Ikonos images , 2008 .

[50]  G. Asner,et al.  Environmental and Biotic Controls over Aboveground Biomass Throughout a Tropical Rain Forest , 2009, Ecosystems.

[51]  W. Cohen,et al.  Lidar remote sensing of above‐ground biomass in three biomes , 2002 .

[52]  Nicholas C. Coops,et al.  Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest , 2012 .

[53]  Jungho Im,et al.  Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .

[54]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[55]  Campbell O. Webb,et al.  Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. , 2006, Ecological applications : a publication of the Ecological Society of America.

[56]  C. Gleason,et al.  A Review of Remote Sensing of Forest Biomass and Biofuel: Options for Small-Area Applications , 2011 .

[57]  David Saah,et al.  Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass , 2012 .

[58]  J. Bryan Blair,et al.  Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion , 2011 .

[59]  H. Zwally,et al.  Overview of ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land , 2002 .

[60]  Yong Q. Tian,et al.  Estimating Basal Area and Stem Volume for Individual Trees from Lidar Data , 2007 .

[61]  M. Ashton,et al.  Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .

[62]  R. Dubayah,et al.  Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest , 2002 .

[63]  Kamal Sarabandi,et al.  Model-Based Estimation of Forest Canopy Height in Red and Austrian Pine Stands Using Shuttle Radar Topography Mission and Ancillary Data: A Proof-of-Concept Study , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[64]  R. G. Oderwald,et al.  Separating the ground and airborne laser sampling phases to estimate tropical forest basal area, volume, and biomass , 1997 .

[65]  W. Cohen,et al.  An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon , 2001 .

[66]  E. Næsset,et al.  A fine-scale model for area-based predictions of tree-size-related attributes derived from LiDAR canopy heights , 2012 .

[67]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[68]  E. Næsset,et al.  Weibull and percentile models for lidar-based estimation of basal area distribution , 2005 .

[69]  J. K. Hiers,et al.  Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics , 2009 .

[70]  W. Walker,et al.  Mapping forest structure for wildlife habitat analysis using waveform lidar: Validation of montane ecosystems , 2005 .

[71]  A. Prasad,et al.  Geographical distributions of carbon in biomass and soils of tropical Asian forests , 1993 .

[72]  Randolph H. Wynne,et al.  Estimating forest biomass using small footprint LiDAR data: An individual tree-based approach that incorporates training data , 2005 .

[73]  I. Burke,et al.  Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .

[74]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[75]  M. Ter-Mikaelian,et al.  Biomass equations for sixty-five North American tree species , 1997 .

[76]  Philip M. Fearnside,et al.  GREENHOUSE GASES FROM DEFORESTATION IN BRAZILIAN AMAZONIA: NET COMMITTED EMISSIONS , 1997 .

[77]  Nicholas Skowronski,et al.  Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey , 2007 .

[78]  Richard A. Birdsey,et al.  Comprehensive database of diameter-based biomass regressions for North American tree species , 2004 .

[79]  M. Lefsky,et al.  Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests , 2001 .

[80]  Dirk Pflugmacher,et al.  Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data , 2009 .

[81]  Pascale Dubois-Fernandez,et al.  Forest Height Inversion Using High-Resolution P-Band Pol-InSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[82]  Z. J. Bortolot,et al.  Using Tree Clusters to Derive Forest Properties from Small Footprint Lidar Data , 2006 .

[83]  G. Hurtt,et al.  Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica , 2009 .

[84]  Christopher Potter,et al.  Terrestrial Biomass and the Effects of Deforestation on the Global Carbon Cycle , 1999 .

[85]  W. Walker,et al.  Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy , 2006 .

[86]  Alan H. Strahler,et al.  Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing , 2009 .

[87]  P. Treitz,et al.  Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density , 2006 .

[88]  P. Gong,et al.  Filtering airborne laser scanning data with morphological methods , 2007 .

[89]  Ross Nelson,et al.  Measuring biomass and carbon in delaware using an airborne profiling LIDAR , 2004 .

[90]  Patrick Johnson,et al.  Synergistic use of very high-frequency radar and discrete-return lidar for estimating biomass in temperate hardwood and mixed forests , 2011, Annals of Forest Science.

[91]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .

[92]  K. Jon Ranson,et al.  Imaging radar for ecosystem studies , 1995 .

[93]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[94]  Qi Chen Assessment of terrain elevation derived from satellite laser altimetry over mountainous forest areas using airborne lidar data , 2010 .

[95]  Frédéric Bretar,et al.  Full-waveform topographic lidar : State-of-the-art , 2009 .

[96]  D. Roberts,et al.  Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors , 2011 .

[97]  S. Goetz,et al.  Importance of biomass in the global carbon cycle , 2009 .

[98]  C. Potter,et al.  Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region , 2001 .

[99]  W. Cohen,et al.  Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest , 2005 .

[100]  S. Popescu Estimating biomass of individual pine trees using airborne lidar , 2007 .

[101]  M. D. Nelson,et al.  Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information , 2008 .

[102]  P. E. Schroeder,et al.  SPATIAL PATTERNS OF ABOVEGROUND PRODUCTION AND MORTALITY OF WOODY BIOMASS FOR EASTERN U.S. FORESTS , 1999 .

[103]  Wen Liu,et al.  Synergistic Use of Satellite Laser Altimetry and Shuttle Radar Topography Mission DEM for Estimating Ground Elevation Over Mountainous Vegetated Areas , 2013, IEEE Geoscience and Remote Sensing Letters.

[104]  H. Balzter,et al.  Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry , 2007 .

[105]  T. Dawson,et al.  Quantifying forest above ground carbon content using LiDAR remote sensing , 2004 .

[106]  J. Holmgren,et al.  Estimation of Tree Height and Stem Volume on Plots Using Airborne Laser Scanning , 2003, Forest Science.

[107]  George C. Hurtt,et al.  Linking models and data on vegetation structure , 2010 .

[108]  P. Gong,et al.  Isolating individual trees in a savanna woodland using small footprint lidar data , 2006 .

[109]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[110]  W. Krabill,et al.  Gross-merchantable timber volume estimation using an airborne lidar system , 1986 .

[111]  I. Hajnsek,et al.  Height-biomass allometry in temperate forests performance accuracy of height-biomass allometry , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[112]  Jan Kozłowski,et al.  Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant? , 2004 .

[113]  Helena Mitasova,et al.  Use of GIS for Estimating Potential and Actual Forest Biomass for Continental South and Southeast Asia , 1994 .

[114]  D. B. Coyle,et al.  Optimization of an airborne laser altimeter for remote sensing of vegetation and tree canopies , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[115]  Chengquan Huang,et al.  Regional forest growth rates measured by combining ICESat GLAS and Landsat data , 2009 .

[116]  Markus Hollaus,et al.  Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment , 2007, Sensors (Basel, Switzerland).

[117]  C. Tucker,et al.  A large carbon sink in the woody biomass of Northern forests , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[118]  J. Blair,et al.  The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography , 1999 .

[119]  M. Dobson,et al.  The use of Imaging radars for ecological applications : A review , 1997 .

[120]  Qi Chen Improvement of the Edge‐based Morphological (EM) method for lidar data filtering , 2009 .

[121]  J. Terborgh,et al.  The regional variation of aboveground live biomass in old‐growth Amazonian forests , 2006 .

[122]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[123]  S. Popescu,et al.  Lidar remote sensing of forest biomass : A scale-invariant estimation approach using airborne lasers , 2009 .

[124]  Juilson Jubanski,et al.  ICESat/GLAS Data as a Measurement Tool for Peatland Topography and Peat Swamp Forest Biomass in Kalimantan, Indonesia , 2011, Remote. Sens..

[125]  Michael A. Wulder,et al.  Integration of GLAS and Landsat TM data for aboveground biomass estimation , 2010 .

[126]  D. Clark,et al.  Tropical forest biomass estimation and the fallacy of misplaced concreteness , 2012 .

[127]  F. Raulier,et al.  Canadian national tree aboveground biomass equations , 2005 .

[128]  Anthony M. Filippi,et al.  Assessment of available rangeland woody plant biomass with a terrestrial lidar system. , 2012 .

[129]  Mark O. Kimberley,et al.  Airborne scanning LiDAR in a double sampling forest carbon inventory , 2012 .

[130]  Sandra A. Brown,et al.  Monitoring and estimating tropical forest carbon stocks: making REDD a reality , 2007 .

[131]  Ross Nelson,et al.  Estimating forest biomass and volume using airborne laser data , 1988 .

[132]  Richard G. Oderwald,et al.  Forest Volume and Biomass Estimation Using Small-Footprint Lidar-Distributional Parameters on a Per-Segment Basis , 2006 .

[133]  Helen Amanda Fricker,et al.  The ICESat-2 Laser Altimetry Mission , 2010, Proceedings of the IEEE.

[134]  S. Brown,et al.  Use of forest inventories and geographic information systems to estimate biomass density of tropical forests: Application to tropical Africa , 1995, Environmental monitoring and assessment.