Finite memory test response compactors for embedded test applications

This paper introduces a new class of finite memory compaction schemes called convolutional compactors (CCs). They provide compaction ratios of test responses in excess of 100/spl times/, even for a very small number of outputs. This is combined with the capability to detect multiple errors, handling of unknown states, and the ability to diagnose failing scan cells directly from compacted responses. The CCs can also be used to significantly enhance conventional multiple input signature registers. Experimental results presented in the paper demonstrate the efficiency of convolutional compaction for several industrial circuits.

[1]  Janak H. Patel,et al.  A case study on the implementation of the Illinois Scan Architecture , 2001, Proceedings International Test Conference 2001 (Cat. No.01CH37260).

[2]  J. P. Robinson,et al.  Space Compression Methods With Output Data Modification , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[3]  John P. Hayes,et al.  Test response compaction using multiplexed parity trees , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  Brion L. Keller,et al.  A SmartBIST variant with guaranteed encoding , 2001, Proceedings 10th Asian Test Symposium.

[5]  Janusz Rajski,et al.  Fault diagnosis in designs with convolutional compactors , 2004, 2004 International Conferce on Test.

[6]  Mark G. Karpovsky,et al.  Testing Computer Hardware through Data Compression in Space and Time , 1983, ITC.

[7]  Irith Pomeranz,et al.  On output response compression in the presence of unknown output values , 2002, DAC '02.

[8]  Nilanjan Mukherjee,et al.  Embedded deterministic test for low cost manufacturing test , 2002, Proceedings. International Test Conference.

[9]  Peter Wohl,et al.  Analysis and design of optimal combinational compactors [logic test] , 2003, Proceedings. 21st VLSI Test Symposium, 2003..

[10]  Peter Wohl,et al.  Analysis and Design of Optimal Combinational Compactors , 2003 .

[11]  Jacob Savir,et al.  Built In Test for VLSI: Pseudorandom Techniques , 1987 .

[12]  Krishnendu Chakrabarty Zero-aliasing space compaction using linear compactors with bounded overhead , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[13]  Sudhakar M. Reddy,et al.  A Data Compression Technique for Built-In Self-Test , 1988, IEEE Trans. Computers.

[14]  Janak H. Patel,et al.  Application of Saluja-Karpovsky compactors to test responses with many unknowns , 2003, Proceedings. 21st VLSI Test Symposium, 2003..

[15]  Sudhakar M. Reddy,et al.  Convolutional compaction of test responses , 2003, International Test Conference, 2003. Proceedings. ITC 2003..

[16]  J. Ainscough,et al.  The verification of scheduling algorithms , 1994 .

[17]  Brion L. Keller,et al.  Extending OPMISR beyond 10x Scan Test Efficiency , 2002, IEEE Des. Test Comput..

[18]  Janusz Rajski,et al.  Impact of multiple-detect test patterns on product quality , 2003, International Test Conference, 2003. Proceedings. ITC 2003..

[19]  Janusz Rajski,et al.  Arithmetic Built-In Self-Test for Embedded Systems , 1997 .

[20]  Subhasish Mitra,et al.  X-compact: an efficient response compaction technique , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[21]  Thomas W. Williams,et al.  Design of compactors for signature-analyzers in built-in self-test , 2001, Proceedings International Test Conference 2001 (Cat. No.01CH37260).

[22]  Krishnendu Chakrabarty,et al.  Synthesis of single-output space compactors for scan-based sequential circuits , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[23]  John P. Hayes,et al.  Optimal space compaction of test responses , 1995, Proceedings of 1995 IEEE International Test Conference (ITC).

[24]  Akshay Gupta,et al.  Improving Transition Fault Test Pattern Quality through At-Speed Diagnosis , 2006, 2006 IEEE International Test Conference.

[25]  Janusz Rajski,et al.  Logic BIST for large industrial designs: real issues and case studies , 1999, International Test Conference 1999. Proceedings (IEEE Cat. No.99CH37034).

[26]  Michael Gössel,et al.  Diagnosis of scan-chains by use of a configurable signature register and error-correcting codes , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.

[27]  Subhasish Mitra,et al.  X-compact: an efficient response compaction technique for test cost reduction , 2002, Proceedings. International Test Conference.

[28]  I. Anderson Combinatorial Designs: Construction Methods , 1990 .

[29]  Adit D. Singh,et al.  Early error detection in systems-on-chip for fault-tolerance and at-speed debugging , 2001, Proceedings 19th IEEE VLSI Test Symposium. VTS 2001.

[30]  Ieee Circuits,et al.  IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems information for authors , 2018, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[31]  Nur A. Touba,et al.  Synthesis of zero-aliasing elementary-tree space compactors , 1998, Proceedings. 16th IEEE VLSI Test Symposium (Cat. No.98TB100231).