Adaptive image interrogation for PIV: application to compressible flows and interfaces

As an experimental tool, Particle Image Velocimetry has quickly superseded traditional point-wise measurements. The inherent image processing has become standardized though the performances are strongly dependent on user experience. Moreover, the arduously selected image interrogation parameters are applied uniformly throughout the image snapshots and image sequence but seldom comply with the observed fluid’s convective motion, spatial distribution in length scales or signal distribution. Instead, a degree of adaptation in the image analyses is required to estimate the velocity field underlying the image recordings as accurate as possible and preferably within an automated fashion. In this work, the aim has been a global solution which through adaptivity of the interrogation parameters (window size, eccentricity, orientation, location and overlap) remains adequate in the majority of encountered problems. This dissertation proposes to go in line of a recursive approach autonomously adapting to both signal and flow conditions. Correlation window location, number and size are regulated taking into account seeding quantity and flow fluctuation magnitude. Signal quantization is based on individual particle image segmentation while spatial variance in velocity served as a heuristic for flow adaptation. The new interrogation method surpasses the compromise between spatial resolution and robustness and places more and smaller windows where the flow requires it and seeding allows it. Vice versa, less of these unnecessary small windows are placed in regions where the flow does not require it (i.e. absence of gradients or fluctuations in velocity). A variant of the spatially adaptive interrogation method is proposed that refines window size, shape, orientation and spatial distribution based on the ensemble averaged velocity field and image properties. The use of ensemble averaged properties enables the reliable application of non-isotropic resolution in contrast to the instantaneous adaptive approach where the latter is impracticable. This approach additionally allows to reduce the number of interrogation windows without overly compromising the measurement spatial resolution where needed. To cope with typical problems of PIV near interfaces, an innovative interface treatment has been proposed incorporating wall adaptivity in an automated manner by gradually increasing the sampling rate in the vicinity of the wall, rotating the correlation windows parallel to the interface and reducing wall-normal window sizes. The enhanced performances of the adaptive interrogation approach have been extensively assessed and demonstrated on a large basis of experimental flow image recordings.

[1]  Fulvio Scarano,et al.  Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction , 2007 .

[2]  Ali Etebari,et al.  Improvements on the accuracy of derivative estimation from DPIV velocity measurements , 2005 .

[3]  Junaed Sattar Snakes , Shapes and Gradient Vector Flow , 2022 .

[4]  Michael Yianneskis,et al.  On the quantification of energy dissipation in the impeller stream of a stirred vessel from fluctuating velocity gradient measurements , 2004 .

[5]  P. Moin,et al.  Direct numerical simulation of turbulent flow over a backward-facing step , 1997, Journal of Fluid Mechanics.

[6]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[7]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[8]  Kazuo Ohmi,et al.  Particle-tracking velocimetry with new algorithms , 2000 .

[9]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[10]  M. Carbonaro,et al.  von Karman Institute for Fluid Dynamics , 2004 .

[11]  J. Westerweel,et al.  Universal outlier detection for PIV data , 2005 .

[12]  Damon Honnery,et al.  Autocorrelation Functions and the Determination of Integral Length with Reference to Experimental and Numerical Data , 2004 .

[13]  Jack Perkins,et al.  Computer image processing and recognition: Ed. E.L. Hall Academic Press, pp. 584, £16.60 , 1981 .

[14]  M. D. Deshpande,et al.  FLUID MECHANICS IN THE DRIVEN CAVITY , 2000 .

[15]  K. Christensen The influence of peak-locking errors on turbulence statistics computed from PIV ensembles , 2004 .

[16]  Ronald J. Adrian,et al.  Dynamic ranges of velocity and spatial resolution of particle image velocimetry , 1997 .

[17]  W. Merzkirch,et al.  A novel PIV technique for measurements in multiphase flows and its application to two-phase bubbly flows , 2002 .

[18]  J. J. Stephens Distance Distributions for Randomly Distributed Data1 , 1972 .

[19]  B. Lecordier,et al.  Advanced PIV algorithms with Image Distortion Validation and Comparison using Synthetic Images of Turbulent Flow , 2004 .

[20]  Chris Willert Advanced image analysis for particle image velocimetry. Part I: Processing individual PIV recordings , 2009 .

[21]  P. S. Klebanoff,et al.  Characteristics of turbulence in a boundary layer with zero pressure gradient , 1955 .

[22]  M. Koochesfahani,et al.  The accuracy of remapping irregularly spaced velocity data onto a regular grid and the computation of vorticity , 2000 .

[23]  Carl D. Meinhart,et al.  Second-order accurate particle image velocimetry , 2001 .

[24]  Javier Jiménez,et al.  Approximate reconstruction of randomly sampled signals , 1987 .

[25]  Jaakko Astola,et al.  Adaptive Window Size Image De-noising Based on Intersection of Confidence Intervals (ICI) Rule , 2002, Journal of Mathematical Imaging and Vision.

[26]  Christian Willert,et al.  Particle image velocimetry : new developments and recent applications , 2008 .

[27]  Fulvio Scarano,et al.  Iterative multigrid approach in PIV image processing with discrete window offset , 1999 .

[28]  Wolfgang Heidrich,et al.  Fast Primitive Distribution for Illustration , 2002, Rendering Techniques.

[29]  Kenji Shimada,et al.  An Angle-Based Approach to Two-Dimensional Mesh Smoothing , 2000, IMR.

[30]  F. Durst,et al.  Applications of Laser Techniques to Fluid Mechanics , 1991 .

[31]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[32]  Holger Nobach,et al.  Background extraction from double-frame PIV images , 2005 .

[33]  Raf Theunissen,et al.  Spatially adaptive PIV interrogation based on data ensemble , 2010 .

[34]  Yann Guezennec,et al.  Statistical investigation of errors in particle image velocimetry , 1989 .

[35]  Michel Stanislas,et al.  REVIEW ARTICLE: Main results of the First International PIV Challenge , 2003 .

[36]  R. Humble,et al.  PIV Measurements of a Shock Wave/Turbulent Boundary Layer Interaction , 2006 .

[37]  J. Westerweel Theoretical analysis of the measurement precision in particle image velocimetry , 2000 .

[38]  R. Theunissen,et al.  A new facility for time-resolved PIV measurements in rotating channels , 2008 .

[39]  Takeo Kanade,et al.  A locally adaptive window for signal matching , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[40]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[41]  J. J. Wang,et al.  Limitation and improvement of PIV: Part I: Limitation of conventional techniques due to deformation of particle image patterns , 1993 .

[42]  Jerry Westerweel,et al.  On velocity gradients in PIV interrogation , 2008 .

[43]  T Gustavsson,et al.  Flame front tracking by laser induced fluorescence spectroscopy and advanced image analysis. , 2001, Optics express.

[44]  S. Monismith,et al.  A hybrid digital particle tracking velocimetry technique , 1997 .

[45]  Michel Stanislas,et al.  Some considerations on the accuracy and frequency response of some derivative filters applied to particle image velocimetry vector fields , 2002 .

[46]  Nelson H. C. Yung,et al.  Corner detector based on global and local curvature properties , 2008 .

[47]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[48]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[49]  J. Nogueira,et al.  Limits on the resolution of correlation PIV iterative methods. Practical implementation and design of weighting functions , 2005 .

[50]  F. Scarano,et al.  Evaluation of aero-optical distortion effects in PIV , 2005 .

[51]  I Grant,et al.  The use of neural techniques in PIV and PTV , 1997 .

[52]  F. Scarano Iterative image deformation methods in PIV , 2002 .

[53]  T. Roesgen,et al.  Optimal subpixel interpolation in particle image velocimetry , 2003 .

[54]  A. Vernet,et al.  Considerations and improvements of the analysing algorithms used for time resolved PIV of wall bounded flows , 2004 .

[55]  Fulvio Scarano,et al.  Transonic airfoil aerodynamic characterization by means of PIV , 2008 .

[56]  G. Candler,et al.  Numerical study of inviscid shock interactions on double-wedge geometries , 1997, Journal of Fluid Mechanics.

[57]  L. Tsuei,et al.  Treatment of interfaces in particle image velocimetry , 2000 .

[58]  R. Adrian,et al.  Stereoscopic particle image velocimetry applied to liquid flows , 1993 .

[59]  D. Olivari,et al.  Numerical and experimental modelling of pollutant dispersion in a street canyon , 2002 .

[60]  J. W. Welch,et al.  Nonlinear temporal filtering of time-resolved digital particle image velocimetry data , 2005 .

[61]  Christian J. Kähler,et al.  Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV , 2006 .

[62]  Fulvio Scarano,et al.  Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry , 2009 .

[63]  L. Lourenco,et al.  On the accuracy of velocity and vorticity measurements with PIV , 1995 .

[64]  J. Westerweel,et al.  The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings , 1997 .

[65]  Michel Stanislas,et al.  Main results of the third international PIV Challenge , 2008 .

[66]  Application of non-isotropic resolution PIV in supersonic and hypersonic flows , 2003 .

[67]  U. Ullum,et al.  Statistical analysis and accuracy of PIV data , 1998 .

[68]  Raf Theunissen,et al.  An adaptive sampling and windowing interrogation method in PIV , 2006 .

[69]  H. E. Fiedler,et al.  Limitation and improvement of PIV , 1993 .

[70]  Fulvio Scarano,et al.  Theory of non-isotropic spatial resolution in PIV , 2003 .

[71]  H. H. Bruun,et al.  Hot-Wire Anemometry: Principles and Signal Analysis , 1996 .

[72]  Tommaso Astarita,et al.  Adaptive space resolution for PIV , 2009 .

[73]  Lorenz Sigurdson,et al.  Image correlation velocimetry applied to discrete smoke-wire streaklines in turbulent pipe flow , 2003 .

[74]  Christian J. Kähler,et al.  Fundamentals of multiframe particle image velocimetry (PIV) , 2007 .

[75]  M. L. Riethmuller,et al.  Confidence estimation using dependent circular block bootstrapping: application to the statistical analysis of PIV measurements , 2008 .

[76]  Christian Rey,et al.  Particle Image Velocimetry in Mach 3.5 and 4.5 Shock-Tunnel Flows , 2002 .

[77]  C. Schnörr,et al.  Variational Correlation Approach to Flow Measurement with Window Adaption , 2008 .

[78]  G. Quénot,et al.  Particle image velocimetry with optical flow , 1998 .

[79]  C. O. Asma,et al.  Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow , 2009 .

[80]  A. Susset,et al.  A novel architecture for a super-resolution PIV algorithm developed for the improvement of the resolution of large velocity gradient measurements , 2006 .

[81]  R. Theunissen,et al.  Experimental Investigation of Aerosol Deposition in Alveolar Lung Airways , 2006 .

[82]  H. Tsai,et al.  Numerical investigation of supersonic nozzle flow separation , 2007 .

[83]  Fulvio Scarano,et al.  Planar velocity measurements of a two-dimensional compressible wake , 2003 .

[84]  Jürgen Kompenhans,et al.  Advanced evaluation algorithms for standard and dual plane particle image velocimetry. , 1998 .

[85]  R. Gould,et al.  Towards better uncertainty estimates for turbulence statistics , 1996 .

[86]  Steven T. Wereley,et al.  Advances and applications of the digital mask technique in particle image velocimetry experiments , 2003 .

[87]  Precision of direct measurement of vorticity from digital particle images , 2003 .

[88]  Armin Gruen,et al.  Particle tracking velocimetry in three-dimensional flows , 1993, Experiments in Fluids.

[89]  Tommaso Astarita,et al.  Analysis of weighting windows for image deformation methods in PIV , 2007 .

[90]  J. Westerweel,et al.  Effect of Sensor Geometry on the Performance of PIV Interrogation , 2000 .

[91]  Fulvio Scarano,et al.  Lagrangian and Eulerian views into a turbulent boundary layer flow using time resolved tomographic PIV , 2008 .

[92]  Raf Theunissen,et al.  On improvement of PIV image interrogation near stationary interfaces , 2008 .

[93]  Joseph Katz,et al.  Five techniques for increasing the speed and accuracy of PIV interrogation , 2001 .

[94]  Fulvio Scarano,et al.  Application of PIV in a Mach 7 double-ramp flow , 2006 .

[95]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .

[96]  F. Zwiers,et al.  The interpretation and estimation of effective sample size , 1984 .

[97]  Ferry Schrijer,et al.  Effect of predictor–corrector filtering on the stability and spatial resolution of iterative PIV interrogation , 2008 .

[99]  Markus Raffel,et al.  Particle Image Velocimetry: A Practical Guide , 2002 .

[100]  Eugene S. Love,et al.  Experimental and Theoretical Studies of Axisymmetric Free Jets , 1959 .

[101]  Particle-image velocimetry measurement in the exhaust of a solid rocket motor , 2004 .

[102]  J. D. Bugg,et al.  Variable threshold outlier identification in PIV data , 2004 .

[103]  C. Willert,et al.  Digital particle image velocimetry , 1991 .

[104]  L. Graftieaux,et al.  Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows , 2001 .

[105]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[106]  R. Adrian Twenty years of particle image velocimetry , 2005 .

[107]  R. Theunissen,et al.  Application of Adaptive PIV Interrogation in a Hypersonic Flow , 2006 .

[108]  Raf Theunissen,et al.  CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways. , 2009, Journal of aerosol science.

[109]  Y. Hassan,et al.  Full-field bubbly flow velocity measurements using a multiframe particle tracking technique , 1991 .

[110]  Michel Stanislas,et al.  Practical aspects of image recording in particle image velocimetry , 1997 .

[111]  F. S. Billig,et al.  Shock-wave shapes around spherical-and cylindrical-nosed bodies. , 1967 .

[112]  J. Nogueira,et al.  Local field correction PIV: on the increase of accuracy of digital PIV systems , 1999 .

[113]  C van Ertbruggen,et al.  Validation of CFD predictions of flow in a 3D alveolated bend with experimental data. , 2008, Journal of biomechanics.

[114]  Eric Rignot,et al.  Performance analysis and application of grid interpolation techniques for fluid flows , 1993, Experiments in Fluids.

[115]  Steven T. Wereley,et al.  A correlation-based continuous window-shift technique to reduce the peak-locking effect in digital PIV image evaluation , 2002 .

[116]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[117]  Adrian Spencer,et al.  Correcting for sub-grid filtering effects in particle image velocimetry data , 2005 .

[118]  Hyung Jin Sung,et al.  A further assessment of interpolation schemes for window deformation in PIV , 2006 .

[119]  J. Nogueira,et al.  Identification of a new source of peak locking, analysis and its removal in conventional and super-resolution PIV techniques , 2001 .

[120]  J. Soria An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique , 1996 .

[121]  Fulvio Scarano,et al.  S-PIV comparative assessment: image dewarping+misalignment correction and pinhole+geometric back projection , 2005 .

[122]  Richard D. Keane,et al.  Super-resolution particle imaging velocimetry , 1995 .

[123]  Douglas P. Hart,et al.  Reverse hierarchical PIV processing , 2002 .

[124]  Neil A. Dodgson,et al.  Quadratic interpolation for image resampling , 1997, IEEE Trans. Image Process..

[125]  C. Brücker 3D scanning PIV applied to an air flow in a motored engine using digital high-speed video , 1997 .

[126]  On the stability of iterative PIV image interrogation methods , 2004 .

[127]  Pentti Saarenrinne,et al.  Experiences of turbulence measurement with PIV , 2001 .

[128]  D. Tritton,et al.  Physical Fluid Dynamics , 1977 .

[129]  R. Korkegi,et al.  An investigation of the effect of suction on hypersonic laminar boundary-layer separation. , 1968 .

[130]  Tommaso Astarita,et al.  Analysis of interpolation schemes for image deformation methods in PIV , 2005 .

[131]  W. Merzkirch,et al.  A comparative study of the MQD method and several correlation-based PIV evaluation algorithms , 2000 .

[132]  Vernon J. Rossow,et al.  Lift-generated vortex wakes of subsonic transport aircraft , 1999 .

[133]  Richard D. Keane,et al.  Theory of cross-correlation analysis of PIV images , 1992 .

[134]  Ian Grant,et al.  Particle image velocimetry measurements of the separated flow behind a rearward facing step , 1992 .

[135]  B. Khoo,et al.  Effects of imperfect spatial resolution on turbulence measurements in the very near-wall viscous sublayer region , 1997 .

[136]  R. Theunissen,et al.  Increasing Accuracy in Super-Resolution PIV , 2005 .

[137]  P. Vedula,et al.  Optimal solenoidal interpolation of turbulent vector fields: application to PTV and super-resolution PIV , 2005 .

[138]  Fulvio Scarano,et al.  Overview of PIV in supersonic Flows , 2007 .

[139]  S. P. McKenna,et al.  Performance of digital image velocimetry processing techniques , 2002 .

[140]  Anil K. Bera,et al.  Efficient tests for normality, homoscedasticity and serial independence of regression residuals , 1980 .

[141]  Tony Lindeberg,et al.  Scale selection for differential operators , 1994 .

[142]  Bernhard Wieneke,et al.  Tomographic particle image velocimetry , 2006 .

[143]  Stephen D. Heister,et al.  Analytical formulas for the velocity field induced by an infinitely thin vortex ring , 2004 .

[144]  Reijo Karvinen,et al.  Measuring turbulence energy with PIV in a backward-facing step flow , 2003 .

[145]  N. L. Jones,et al.  A Comparison of Three‐Dimensional Interpolation Techniques for Plume Characterization , 2003, Ground water.

[146]  L. Lourenco Recent methods and current trends in PIV data processing , 2000 .

[147]  Julio Soria,et al.  Accuracy of out-of-plane vorticity measurements derived from in-plane velocity field data , 1998 .

[148]  F. De Gregorio,et al.  Spatial resolution of PIV for the measurement of turbulence , 2007 .

[149]  H. White,et al.  Automatic Block-Length Selection for the Dependent Bootstrap , 2004 .

[150]  S. Wereley,et al.  A PIV Algorithm for Estimating Time-Averaged Velocity Fields , 2000 .

[151]  Shigeru Nishio,et al.  Standard images for particle-image velocimetry , 2000 .

[152]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[153]  A. Prasad,et al.  Optimization procedure for pulse separation in cross-correlation PIV , 1996 .

[154]  M. L. Riethmuller,et al.  Advances in Hybrid PIV-PTV Technique and Application to Vortical Flows , 2004 .

[155]  M. Sambridge,et al.  Geophysical parametrization and interpolation of irregular data using natural neighbours , 1995 .

[156]  J. Walker,et al.  Instabilities in supersonic compression ramp flow , 2004, Journal of Fluid Mechanics.

[157]  R. Meynart,et al.  Instantaneous velocity field measurements in unsteady gas flow by speckle velocimetry. , 1983, Applied optics.

[158]  K. Singh,et al.  On the Asymptotic Accuracy of Efron's Bootstrap , 1981 .

[159]  Jean Hertzberg,et al.  Experimental uncertainties associated with particle image velocimetry (PIV) based vorticity algorithms , 1999 .

[160]  Patrick Rambaud,et al.  Wavelet based eddy structure eduction from a backward facing step flow investigated using particle image velocimetry , 2004 .

[161]  Heinrich Stüer,et al.  Interpolation of Scattered 3D PTV Data to a Regular Grid , 2000 .

[162]  J. Westerweel Digital particle image velocimetry: theory and application , 1993 .

[163]  J. Westerweel Fundamentals of digital particle image velocimetry , 1997 .

[164]  M. Wernet Symmetric phase only filtering: a new paradigm for DPIV data processing , 2005 .

[165]  J. Westerweel,et al.  Efficient detection of spurious vectors in particle image velocimetry data , 1994 .

[166]  Marcelo H. García,et al.  Confidence intervals in the determination of turbulence parameters , 2006 .

[167]  Julio Soria,et al.  Particle image velocimetry measurements of a backward-facing step flow , 2002 .

[168]  Ronald Adrian,et al.  DEVELOPMENT OF PULSED LASER VELOCIMETRY (PLV) FOR MEASUREMENT OF TURBULENT FLOW. , 1984 .

[169]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[170]  Chebyshev spectral method and Chebyshev noise processing procedure for vorticity calculation in PIV post-processing , 2001 .

[171]  Javier Jiménez,et al.  On the performance of particle tracking , 1987, Journal of Fluid Mechanics.

[172]  J. Westerweel,et al.  Measurement of fully-developed turbulent pipe flow with digital particle image velocimetry , 1996 .

[173]  L. Vervisch,et al.  Estimation of the accuracy of PIV treatments for turbulent flow studies by direct numerical simulation of multi-phase flow , 2001 .

[174]  Christine Guenther The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time , 2003 .

[175]  Kohsei Takehara,et al.  A study on particle identification in PTV particle mask correlation method , 1998 .

[176]  Fulvio Scarano,et al.  Advances in iterative multigrid PIV image processing , 2000 .

[177]  G. A. Young,et al.  Bootstrap: More than a Stab in the Dark? , 1994 .

[178]  Bernd Jähne,et al.  Comparison of Gaussian particle center estimators and the achievable measurement density for particle tracking velocimetry , 2000 .

[179]  Weng Kong Chan,et al.  Applications of laser techniques in fluid mechanics , 1991, Other Conferences.

[180]  Fulvio Scarano,et al.  Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows , 2007 .

[181]  Shinji Honami,et al.  The Effect of Inlet Turbulence Intensity on the Reattachment Process Over a Backward-Facing Step , 1989 .

[182]  M. Gharib,et al.  On errors of digital particle image velocimetry , 1997 .

[183]  A. Melling Tracer particles and seeding for particle image velocimetry , 1997 .

[184]  Skin friction pattern analysis using near-wall PIV , 2005 .

[185]  M. Perlin,et al.  Improved methods for thin, surface boundary layer investigations , 1998 .

[186]  T. Lehmann,et al.  Addendum: B-spline interpolation in medical image processing , 2001, IEEE Transactions on Medical Imaging.