Assessment of the impact of the biological larvicide VectoMax G: Combination of Bacillus thuringiensis and Lysinibacillus sphaericus on non-target aquatic organisms in Yaoundé-Cameroon

[1]  C. Antonio-Nkondjio,et al.  High efficacy of microbial larvicides for malaria vectors control in the city of Yaounde Cameroon following a cluster randomized trial , 2021, Scientific Reports.

[2]  L. Després,et al.  Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp. israelensis (Bti). , 2020, The Science of the total environment.

[3]  C. Antonio-Nkondjio,et al.  Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon , 2019, Infectious Diseases of Poverty.

[4]  Magnus Land,et al.  What are the effects of control of mosquitoes and other nematoceran Diptera using the microbial agent Bacillus thuringiensis israelensis (Bti) on aquatic and terrestrial ecosystems? A systematic review protocol , 2019, Environmental Evidence.

[5]  V. Robert,et al.  Larval predation in malaria vectors and its potential implication in malaria transmission: an overlooked ecosystem service? , 2019, Parasites & vectors.

[6]  C. Brühl,et al.  Adverse effects of mosquito control using Bacillus thuringiensis var. israelensis: Reduced chironomid abundances in mesocosm, semi-field and field studies. , 2019, Ecotoxicology and environmental safety.

[7]  A. Githeko,et al.  Microbial larvicides for mosquito control: Impact of long lasting formulations of Bacillus thuringiensis var. israelensis and Bacillus sphaericus on non‐target organisms in western Kenya highlands , 2018, Ecology and evolution.

[8]  Sébastien Chouin,et al.  No association between the use of Bti for mosquito control and the dynamics of non-target aquatic invertebrates in French coastal and continental wetlands. , 2016, The Science of the total environment.

[9]  C. Piscart,et al.  Aquatic invertebrate fauna of wells in a tropical mountain climate, western Cameroon , 2015 .

[10]  M. Harry,et al.  Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination , 2014, Malaria Journal.

[11]  John M. Marshall,et al.  THE IMPORTANCE OF MOSQUITO BEHAVIOURAL ADAPTATIONS TO MALARIA CONTROL IN AFRICA , 2013, Evolution; international journal of organic evolution.

[12]  Hélène Guis,et al.  Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. , 2012, The Journal of infectious diseases.

[13]  Birkinesh Ameneshewa,et al.  Global Trends in the Use of Insecticides to Control Vector-Borne Diseases , 2012, Environmental health perspectives.

[14]  A. Githeko,et al.  Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands , 2011, Parasites & Vectors.

[15]  Constantianus J. M. Koenraadt,et al.  Efficacy of Aquatain, a Monomolecular Film, for the Control of Malaria Vectors in Rice Paddies , 2011, PloS one.

[16]  M. Takagi,et al.  Predators of Anopheles gambiae sensu lato (Diptera: Culicidae) Larvae in Wetlands, Western Kenya: Confirmation by Polymerase Chain Reaction Method , 2010, Journal of medical entomology.

[17]  S. Lindsay,et al.  Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: a controlled trial. , 2009, Bulletin of the World Health Organization.

[18]  W. Takken,et al.  Identifying the most productive breeding sites for malaria mosquitoes in The Gambia , 2009, Malaria Journal.

[19]  L. Després,et al.  Long Lasting Persistence of Bacillus thuringiensis Subsp. israelensis (Bti) in Mosquito Natural Habitats , 2008, PloS one.

[20]  S. Dodson,et al.  The relationship between zooplankton community structure and lake characteristics in temperate lakes (Northern Wisconsin, USA) , 2008 .

[21]  J. Rojas,et al.  Impact of environmental manipulation for Anopheles pseudopunctipennis Theobald control on aquatic insect communities in southern Mexico , 2007, Journal of vector ecology : journal of the Society for Vector Ecology.

[22]  K. Walker,et al.  Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential , 2007, Medical and veterinary entomology.

[23]  S. Lindsay,et al.  Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya , 2006, Tropical medicine & international health : TM & IH.

[24]  N. Markwick,et al.  Is Resistance to Bacillus thuringiensis Endotoxin Cry1Ac Associated with a Change in the Behavior of Light Brown Apple Moth Larvae (Lepidoptera: Tortricidae)? , 2006, Journal of economic entomology.

[25]  J. Wethé,et al.  Assainissement des eaux usées et risques socio – sanitaires et environnementaux en zones d’habitat planifié de Yaoundé (Cameroun) , 2003 .

[26]  M. Mangel,et al.  Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecific larval density , 2003 .

[27]  B. Knols,et al.  Efficacy and efficiency of new Bacillus thuringiensis var. israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya , 2003, Tropical medicine & international health : TM & IH.

[28]  M. Mulla,et al.  Strategies for the Management of Resistance in Mosquitoes to the Microbial Control Agent Bacillus sphaericus , 2002, Journal of medical entomology.

[29]  H. Segers The nomenclature of the Rotifera: annotated checklist of valid familyand genus-group names , 2002 .

[30]  Craig E. L. Stark,et al.  When zero is not zero: The problem of ambiguous baseline conditions in fMRI , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Holger Stark,et al.  Physics of colloidal dispersions in nematic liquid crystals , 2001 .

[32]  J. Boisvert,et al.  Effects of Bacillus thuringiensis var. israelensis on Target and Nontarget Organisms: A Review of Laboratory and Field Experiments , 2000 .

[33]  C. Dupont,et al.  Persistence of Bacillus Thuringiensis serovar. Israelensis toxic activity in the environment and interaction with natural substrates , 1986 .

[34]  I. V. Velde Revision of the African species of the genus Mesocyclops Sars, 1914 (Copepoda: Cyclopidae) , 1984, Hydrobiologia.

[35]  J. Lund,et al.  The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting , 1958, Hydrobiologia.

[36]  M. Harry,et al.  Challenges for malaria vector control in sub-Saharan Africa: Resistance and behavioral adaptations in Anopheles populations. , 2017, Journal of vector borne diseases.

[37]  L. Després,et al.  Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. , 2011, Pest management science.

[38]  L. Lacey BACILLUS THURINGIENSIS SEROVARIETY ISRAELENSIS AND BACILLUS SPHAERICUS FOR MOSQUITO CONTROL , 2007, Journal of the American Mosquito Control Association.

[39]  L. Sanoamuang,et al.  A simplified method for preparing rotifer trophi for scanning electron microscopy , 2004, Hydrobiologia.

[40]  L. Lacey,et al.  The Safety of Bacterial Microbial Agents Used for Black Fly and Mosquito Control in Aquatic Environments , 2003 .

[41]  R. Rose Pesticides and public health: integrated methods of mosquito management. , 2001, Emerging infectious diseases.

[42]  S. Frontier Sur une mt́hode d'analyse faunistique rapide du zooplancton , 1969 .