From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.

[1]  J. Janek,et al.  Novel anion conductors--conductivity, thermodynamic stability and hydration of anion-substituted mayenite-type cage compounds C12A7:X (X = O, OH, Cl, F, CN, S, N). , 2015, Physical chemistry chemical physics : PCCP.

[2]  Linda F. Nazar,et al.  Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery , 2015 .

[3]  H. Althues,et al.  Lithium–sulfur batteries: Influence of C-rate, amount of electrolyte and sulfur loading on cycle performance , 2014 .

[4]  Leon L. Shaw,et al.  Recent advances in lithium–sulfur batteries , 2014 .

[5]  J. Janek,et al.  Pitfalls in the characterization of sulfur/carbon nanocomposite materials for lithium–sulfur batteries , 2014 .

[6]  Xuanxuan Bi,et al.  Understanding side reactions in K-O2 batteries for improved cycle life. , 2014, ACS applied materials & interfaces.

[7]  Xiaoyu Cui,et al.  On rechargeability and reaction kinetics of sodium–air batteries , 2014 .

[8]  Jens Tübke,et al.  Cell energy density and electrolyte/sulfur ratio in Li–S cells , 2014 .

[9]  Hiroshi Nagata,et al.  A lithium sulfur battery with high power density , 2014 .

[10]  Jürgen Janek,et al.  TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries. , 2014, Journal of the American Chemical Society.

[11]  Héctor D. Abruña,et al.  A rechargeable Na–CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes , 2014 .

[12]  J. Janek,et al.  Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando X-ray diffraction. , 2014, Physical chemistry chemical physics : PCCP.

[13]  Philipp Adelhelm,et al.  On the Thermodynamics, the Role of the Carbon Cathode, and the Cycle Life of the Sodium Superoxide (NaO2) Battery , 2014 .

[14]  Klaus Leitner,et al.  Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates , 2014 .

[15]  Z. Fu,et al.  NiCo2O4 nanosheets supported on Ni foam for rechargeable nonaqueous sodium–air batteries , 2014 .

[16]  Jou-Hyeon Ahn,et al.  Effect of sulfur loading on energy density of lithium sulfur batteries , 2014 .

[17]  Junhe Yang,et al.  Nano‐Copper‐Assisted Immobilization of Sulfur in High‐Surface‐Area Mesoporous Carbon Cathodes for Room Temperature Na‐S Batteries , 2014 .

[18]  Jun Liu,et al.  Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage , 2014, Nature Communications.

[19]  Lynden A. Archer,et al.  Sodium–oxygen batteries: a new class of metal–air batteries , 2014 .

[20]  Seongmin Ha,et al.  Sodium-metal halide and sodium-air batteries. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  L. Nazar,et al.  Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries , 2014 .

[22]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[23]  Yong‐Sheng Hu,et al.  New insight in understanding oxygen reduction and evolution in solid-state lithium-oxygen batteries using an in situ environmental scanning electron microscope. , 2014, Nano letters.

[24]  Ning Zhao,et al.  Long-life Na-O₂ batteries with high energy efficiency enabled by electrochemically splitting NaO₂ at a low overpotential. , 2014, Physical chemistry chemical physics : PCCP.

[25]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[26]  R. Dominko,et al.  Effective Separation of Lithium Anode and Sulfur Cathode in Lithium–Sulfur Batteries , 2014 .

[27]  Jun Liu,et al.  V2O5 Polysulfide Anion Barrier for Long-Lived Li–S Batteries , 2014 .

[28]  Ho-Cheol Kim,et al.  Deactivation of carbon electrode for elimination of carbon dioxide evolution from rechargeable lithium–oxygen cells , 2014, Nature Communications.

[29]  A. Manthiram,et al.  Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries. , 2014, The journal of physical chemistry letters.

[30]  K. Kubota,et al.  Layered oxides as positive electrode materials for Na-ion batteries , 2014 .

[31]  Kevin G. Gallagher,et al.  Quantifying the promise of lithium–air batteries for electric vehicles , 2014 .

[32]  Haoshen Zhou,et al.  High capacity Na–O2 batteries with carbon nanotube paper as binder-free air cathode , 2014 .

[33]  D. A. Bograchev,et al.  Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes , 2014, Journal of Solid State Electrochemistry.

[34]  Jeannette M Garcia,et al.  Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries. , 2014, The journal of physical chemistry letters.

[35]  Petr Novák,et al.  Importance of ‘unimportant’ experimental parameters in Li–S battery development , 2014 .

[36]  H. Althues,et al.  Carbon‐Based Anodes for Lithium Sulfur Full Cells with High Cycle Stability , 2014 .

[37]  Donghai Wang,et al.  Nitrogen‐Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High‐Areal‐Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium‐Sulfur Batteries , 2014 .

[38]  H. Althues,et al.  Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes. , 2014, Chemical communications.

[39]  Li-Jun Wan,et al.  A High‐Energy Room‐Temperature Sodium‐Sulfur Battery , 2014, Advanced materials.

[40]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[41]  Kai Xie,et al.  Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries , 2014 .

[42]  K. Kang,et al.  First-Principles Study of the Reaction Mechanism in Sodium–Oxygen Batteries , 2014 .

[43]  Shyue Ping Ong,et al.  Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries. , 2014, Nano letters.

[44]  J. Janek,et al.  Pressure Dynamics in Metal–Oxygen (Metal–Air) Batteries: A Case Study on Sodium Superoxide Cells , 2014 .

[45]  Tejs Vegge,et al.  A New Look at the Stability of Dimethyl Sulfoxide and Acetonitrile in Li-O2 Batteries , 2014 .

[46]  Hong‐Jie Peng,et al.  Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries , 2014 .

[47]  Klaus Leitner,et al.  On the Electrode Potentials in Lithium-Sulfur Batteries and Their Solvent-Dependence , 2014 .

[48]  Shaogang Wang,et al.  Batteries: A Graphene–Pure‐Sulfur Sandwich Structure for Ultrafast, Long‐Life Lithium–Sulfur Batteries (Adv. Mater. 4/2014) , 2014 .

[49]  E. Peled,et al.  Challenges and obstacles in the development of sodium–air batteries , 2013 .

[50]  Wolfgang G. Bessler,et al.  Insight into lithium–sulfur batteries: Elementary kinetic modeling and impedance simulation , 2013 .

[51]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[52]  Sebastian Wenzel,et al.  Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte , 2013 .

[53]  Xueliang Sun,et al.  Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium-air batteries. , 2013, Chemical communications.

[54]  Chunsheng Wang,et al.  In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. , 2013, ACS nano.

[55]  Liquan Chen,et al.  Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery , 2013 .

[56]  Jae-Hun Kim,et al.  Metallic anodes for next generation secondary batteries. , 2013, Chemical Society reviews.

[57]  Yuhui Chen,et al.  A stable cathode for the aprotic Li-O2 battery. , 2013, Nature materials.

[58]  Venkatasubramanian Viswanathan,et al.  Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries , 2013 .

[59]  T. Leichtweiss,et al.  Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes , 2013 .

[60]  Taeeun Yim,et al.  Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries , 2013 .

[61]  Linda F. Nazar,et al.  Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy , 2013 .

[62]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[63]  Daniel Sharon,et al.  Oxidation of Dimethyl Sulfoxide Solutions by Electrochemical Reduction of Oxygen , 2013 .

[64]  Byung Gon Kim,et al.  One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. , 2013, Nano letters.

[65]  Jun Lu,et al.  A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries , 2013, Nature Communications.

[66]  K. Edström,et al.  Why PEO as a binder or polymer coating increases capacity in the Li-S system. , 2013, Chemical communications.

[67]  Takashi Mori,et al.  Combining Accurate O2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O2 Batteries. , 2013, The journal of physical chemistry letters.

[68]  T. Shiga,et al.  Quantitation of Li2O2 stored in Li-O2 batteries based on its reaction with an oxoammonium salt. , 2013, Chemical communications.

[69]  H. Byon,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide-based organic electrolyte for high performance lithium–sulfur batteries , 2013 .

[70]  Céline Barchasz,et al.  New insight into the working mechanism of lithium-sulfur batteries: in situ and operando X-ray diffraction characterization. , 2013, Chemical communications.

[71]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[72]  Hanxi Yang,et al.  Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries , 2013 .

[73]  Zhan Lin,et al.  Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. , 2013, Angewandte Chemie.

[74]  Robert Dominko,et al.  Li-S battery analyzed by UV/Vis in operando mode. , 2013, ChemSusChem.

[75]  Philipp Adelhelm,et al.  A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. , 2013, Physical chemistry chemical physics : PCCP.

[76]  Stefano Meini,et al.  Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li-air cells. , 2013, Physical chemistry chemical physics : PCCP.

[77]  Rotraut Merkle,et al.  Electron and Ion Transport In Li2O2 , 2013, Advanced materials.

[78]  Shengbo Zhang,et al.  Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions , 2013 .

[79]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[80]  Linda F. Nazar,et al.  Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge , 2013 .

[81]  Yu-Guo Guo,et al.  Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries , 2013 .

[82]  Donald J. Siegel,et al.  Charge transport in lithium peroxide: relevance for rechargeable metal–air batteries , 2013, 1305.2904.

[83]  Guangyuan Zheng,et al.  A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage , 2013 .

[84]  T. Shiga,et al.  Cathode reaction mechanism of non-aqueous Li–O2 batteries with highly oxygen radical stable electrolyte solvent , 2013 .

[85]  Dong Ju Lee,et al.  Alternative materials for sodium ion–sulphur batteries , 2013 .

[86]  K. Andreas Friedrich,et al.  In-situ X-ray diffraction studies of lithium-sulfur batteries , 2013 .

[87]  Tejs Vegge,et al.  DFT+U Study of Polaronic Conduction in Li2O2 and Li2CO3: Implications for Li–Air Batteries , 2013 .

[88]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[89]  C. Liang,et al.  Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. , 2013, ACS nano.

[90]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[91]  J. Goodenough,et al.  Advanced Electrodes for High Power Li-ion Batteries , 2013, Materials.

[92]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[93]  Nancy J. Dudney,et al.  Phosphorous Pentasulfide as a Novel Additive for High‐Performance Lithium‐Sulfur Batteries , 2013 .

[94]  M. Watanabe,et al.  Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium–Sulfur Batteries , 2013 .

[95]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[96]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[97]  Yiying Wu,et al.  A low-overpotential potassium-oxygen battery based on potassium superoxide. , 2013, Journal of the American Chemical Society.

[98]  Hee-Dae Lim,et al.  Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes. , 2013, Physical chemistry chemical physics : PCCP.

[99]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[100]  Qian Sun,et al.  An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts. , 2013, Chemical communications.

[101]  F. Alloin,et al.  Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries , 2013 .

[102]  Lynden A. Archer,et al.  Carbon dioxide assist for non-aqueous sodium-oxygen batteries , 2013 .

[103]  Jasim Uddin,et al.  A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. , 2013, Journal of the American Chemical Society.

[104]  Arumugam Manthiram,et al.  Improved lithium-sulfur cells with a treated carbon paper interlayer. , 2013, Physical chemistry chemical physics : PCCP.

[105]  P. Novák,et al.  Critical aspects in the development of lithium–air batteries , 2013, Journal of Solid State Electrochemistry.

[106]  L. Archer,et al.  Lithium-sulfur battery cathode enabled by lithium-nitrile interaction. , 2013, Journal of the American Chemical Society.

[107]  Stefan A Freunberger,et al.  The carbon electrode in nonaqueous Li-O2 cells. , 2013, Journal of the American Chemical Society.

[108]  Guangyuan Zheng,et al.  Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries , 2013, Nature Communications.

[109]  Jin-Woo Park,et al.  High capacity cathode materials for Li–S batteries , 2013 .

[110]  Daniel Sharon,et al.  On the Challenge of Electrolyte Solutions for Li-Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM. , 2013, The journal of physical chemistry letters.

[111]  L. Archer,et al.  In situ synthesis of lithium sulfide–carbon composites as cathode materials for rechargeable lithium batteries , 2013 .

[112]  Gregory V. Chase,et al.  Synergistic Effect of Oxygen and LiNO3 on the Interfacial Stability of Lithium Metal in a Li/O2 Battery , 2013 .

[113]  K. Hayashi,et al.  A Mixed Aqueous/Aprotic Sodium/Air Cell Using a NASICON Ceramic Separator , 2013 .

[114]  Hubert A. Gasteiger,et al.  A Novel On-Line Mass Spectrometer Design for the Study of Multiple Charging Cycles of a Li-O2 Battery , 2013 .

[115]  Zhenguo Yang,et al.  Advanced Intermediate-Temperature Na-S Battery , 2013 .

[116]  A. Gewirth,et al.  Investigating the Li-O2 Battery in an Ether-Based Electrolyte Using Differential Electrochemical Mass Spectrometry , 2013 .

[117]  Ajay Kapoor,et al.  A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery , 2013 .

[118]  Sanjeev Mukerjee,et al.  Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-Based Electrolyte , 2013 .

[119]  E. Cairns,et al.  Nanostructured Li₂S-C composites as cathode material for high-energy lithium/sulfur batteries. , 2012, Nano letters.

[120]  Kai Xie,et al.  Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells , 2012 .

[121]  Arumugam Manthiram,et al.  Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer , 2012, Nature Communications.

[122]  Dan Xu,et al.  A stable sulfone based electrolyte for high performance rechargeable Li-O2 batteries. , 2012, Chemical communications.

[123]  Lin Gu,et al.  Smaller sulfur molecules promise better lithium-sulfur batteries. , 2012, Journal of the American Chemical Society.

[124]  Arumugam Manthiram,et al.  Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. , 2012, Physical chemistry chemical physics : PCCP.

[125]  D. Bethune,et al.  Limitations in Rechargeability of Li-O2 Batteries and Possible Origins. , 2012, The journal of physical chemistry letters.

[126]  Feng Li,et al.  A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries , 2012 .

[127]  Yi Cui,et al.  High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. , 2012, Journal of the American Chemical Society.

[128]  K. Pinkwart,et al.  Lithium–sulphur batteries – binder free carbon nanotubes electrode examined with various electrolytes , 2012 .

[129]  B. Scrosati,et al.  Study of a Li–air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid , 2012 .

[130]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[131]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[132]  Dan Xu,et al.  Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. , 2012, Chemical communications.

[133]  Zi‐Feng Ma,et al.  Rechargeable Li/O2 Cell Based on a LiTFSI-DMMP/PFSA-Li Composite Electrolyte , 2012 .

[134]  Shengdi Zhang Role of LiNO3 in rechargeable lithium/sulfur battery , 2012 .

[135]  Xiangyun Song,et al.  Nano-carbon/sulfur composite cathode materials with carbon nanofiber as electrical conductor for advanced secondary lithium/sulfur cells , 2012 .

[136]  Stefan A. Freunberger,et al.  Li-O2 battery with a dimethylformamide electrolyte. , 2012, Journal of the American Chemical Society.

[137]  N. Dudney,et al.  Influence of Lithium Salts on the Discharge Chemistry of Li-Air Cells. , 2012, The journal of physical chemistry letters.

[138]  Sébastien Patoux,et al.  Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. , 2012, Analytical chemistry.

[139]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[140]  Michael F Toney,et al.  In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. , 2012, Journal of the American Chemical Society.

[141]  J. Tübke,et al.  High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium-sulfur batteries. , 2012, Chemical communications.

[142]  T. Laino,et al.  A new piece in the puzzle of lithium/air batteries: computational study on the chemical stability of propylene carbonate in the presence of lithium peroxide. , 2012, Chemistry.

[143]  Qian Sun,et al.  Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte , 2012 .

[144]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[145]  Bruno Scrosati,et al.  A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon-sulfur battery , 2012 .

[146]  Linda F. Nazar,et al.  Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. , 2012, Journal of the American Chemical Society.

[147]  Y. Shao-horn,et al.  Reversible Reduction of Oxygen to Peroxide Facilitated by Molecular Recognition , 2012, Science.

[148]  Donald J. Siegel,et al.  Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. , 2012, Journal of the American Chemical Society.

[149]  B. Lucht,et al.  Reactivity of Electrolytes for Lithium-Oxygen Batteries with Li2O2 , 2012 .

[150]  Doron Aurbach,et al.  Sulfur‐Impregnated Activated Carbon Fiber Cloth as a Binder‐Free Cathode for Rechargeable Li‐S Batteries , 2011, Advanced materials.

[151]  J. Nørskov,et al.  Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. , 2011, The Journal of chemical physics.

[152]  Jun Lu,et al.  Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes , 2011 .

[153]  Jie Gao,et al.  Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies , 2011 .

[154]  Kang Xu,et al.  Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes , 2011 .

[155]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[156]  Jasim Uddin,et al.  Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)). , 2011, The journal of physical chemistry. A.

[157]  Keith Scott,et al.  Selection of oxygen reduction catalysts for rechargeable lithium–air batteries—Metal or oxide? , 2011 .

[158]  Jun Liu,et al.  Optimization of mesoporous carbon structures for lithium–sulfur battery applications , 2011 .

[159]  Chunsheng Wang,et al.  Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. , 2011, Nano letters.

[160]  Guangyuan Zheng,et al.  Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. , 2011, Nano letters.

[161]  Sanjeev Mukerjee,et al.  Oxygen Electrode Rechargeability in an Ionic Liquid for the Li–Air Battery , 2011 .

[162]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[163]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[164]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[165]  Diana Golodnitsky,et al.  Parameter analysis of a practical lithium- and sodium-air electric vehicle battery , 2011 .

[166]  L. Nazar,et al.  High “C” rate Li-S cathodes: sulfur imbibed bimodal porous carbons , 2011 .

[167]  Lixia Yuan,et al.  Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder , 2011 .

[168]  M. Watanabe,et al.  Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes. , 2011, Chemical communications.

[169]  Jim P. Zheng,et al.  α-MnO2/Carbon Nanotube/Carbon Nanofiber Composite Catalytic Air Electrodes for Rechargeable Lithium-air Batteries , 2011 .

[170]  Yi Cui,et al.  Prelithiated silicon nanowires as an anode for lithium ion batteries. , 2011, ACS nano.

[171]  Jagjit Nanda,et al.  Spectroscopic Characterization of Solid Discharge Products in Li–Air Cells with Aprotic Carbonate Electrolytes , 2011 .

[172]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[173]  Yaqin Huang,et al.  Improve Rate Capability of the Sulfur Cathode Using a Gelatin Binder , 2011 .

[174]  Jou-Hyeon Ahn,et al.  Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte , 2011 .

[175]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[176]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[177]  Ji‐Guang Zhang,et al.  Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes , 2011 .

[178]  Zhenguo Yang,et al.  Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. , 2011, Physical chemistry chemical physics : PCCP.

[179]  Jun Jin,et al.  Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable , 2011 .

[180]  L. Nazar,et al.  Decomposition Reaction of Lithium Bis(oxalato)borate in the Rechargeable Lithium-Oxygen Cell , 2011 .

[181]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[182]  Bruno Scrosati,et al.  Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery , 2011 .

[183]  Bruno Scrosati,et al.  Moving to a Solid‐State Configuration: A Valid Approach to Making Lithium‐Sulfur Batteries Viable for Practical Applications , 2010, Advanced materials.

[184]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[185]  Lei Jin,et al.  Titanium Containing γ‐MnO2 (TM) Hollow Spheres: One‐Step Synthesis and Catalytic Activities in Li/Air Batteries and Oxidative Chemical Reactions , 2010 .

[186]  Xueping Gao,et al.  Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres , 2010 .

[187]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[188]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[189]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[190]  Fuminori Mizuno,et al.  Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes , 2010 .

[191]  Jason Xu,et al.  High Energy Rechargeable Li-S Cells for EV Application: Status, Remaining Problems and Solutions , 2010 .

[192]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[193]  Bruno Scrosati,et al.  A high-performance polymer tin sulfur lithium ion battery. , 2010, Angewandte Chemie.

[194]  Yi Cui,et al.  New nanostructured Li2S/silicon rechargeable battery with high specific energy. , 2010, Nano letters.

[195]  Weikun Wang,et al.  The electrochemical performance of lithium–sulfur batteries with LiClO4 DOL/DME electrolyte , 2010 .

[196]  C. Liang,et al.  Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery , 2009 .

[197]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[198]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[199]  Zaiping Guo,et al.  Investigation of discharge reaction mechanism of lithium|liquid electrolyte|sulfur battery , 2009 .

[200]  Xinping Qiu,et al.  New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy , 2009 .

[201]  Nicholas W. Bartlett,et al.  The effect of oxygen reduction on activated carbon electrodes loaded with manganese dioxide catalyst , 2008 .

[202]  Jing Sun,et al.  Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries , 2008 .

[203]  Z. Wen,et al.  Research on sodium sulfur battery for energy storage , 2008 .

[204]  Ryota Watanabe,et al.  All solid-state battery with sulfur electrode and thio-LISICON electrolyte , 2008 .

[205]  Ralph E. White,et al.  A Mathematical Model for a Lithium–Sulfur Cell , 2008 .

[206]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[207]  H. Ahn,et al.  The short-term cycling properties of Na/PVdF/S battery at ambient temperature , 2008 .

[208]  P. Bruce,et al.  An O2 cathode for rechargeable lithium batteries: The effect of a catalyst , 2007 .

[209]  Jou-Hyeon Ahn,et al.  Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte , 2007 .

[210]  Yongju Jung,et al.  New approaches to improve cycle life characteristics of lithium-sulfur cells , 2007 .

[211]  Jiulin Wang,et al.  Room temperature Na/S batteries with sulfur composite cathode materials , 2007 .

[212]  Soo-Jin Park,et al.  Effect of imidazolium cation on cycle life characteristics of secondary lithium–sulfur cells using liquid electrolytes , 2007 .

[213]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[214]  Jou-Hyeon Ahn,et al.  Room-temperature solid-state sodium/sulfur battery , 2006 .

[215]  Jou-Hyeon Ahn,et al.  Discharge process of Li/PVdF/S cells at room temperature , 2006 .

[216]  Taku Oshima,et al.  Development of Sodium‐Sulfur Batteries , 2005 .

[217]  Y·V·米克海利克 Electrolytes for lithium sulfur cells , 2005 .

[218]  Yongju Jung,et al.  The effect of solvent component on the discharge performance of Lithium–sulfur cell containing various organic electrolytes , 2004 .

[219]  Yuriy V. Mikhaylik,et al.  Li/S fundamental chemistry and application to high-performance rechargeable batteries , 2004 .

[220]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[221]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[222]  Fuminori Mizuno,et al.  All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes , 2003 .

[223]  Zhijun Ling,et al.  Polymer lithium cells with sulfur composites as cathode materials , 2003 .

[224]  Jung-Ki Park,et al.  Electrochemical performance of lithium/sulfur batteries with protected Li anodes , 2003 .

[225]  Hee‐Tak Kim,et al.  Rechargeable Lithium Sulfur Battery I. Structural Change of Sulfur Cathode During Discharge and Charge , 2003 .

[226]  Hee‐Tak Kim,et al.  Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery , 2002 .

[227]  Hee‐Tak Kim,et al.  Structural Factors of Sulfur Cathodes with Poly(ethylene oxide) Binder for Performance of Rechargeable Lithium Sulfur Batteries , 2002 .

[228]  J. Shim,et al.  The Lithium/Sulfur Rechargeable Cell Effects of Electrode Composition and Solvent on Cell Performance , 2002 .

[229]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[230]  Naixin Xu,et al.  A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries , 2002 .

[231]  Nansheng Xu,et al.  Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte , 2002 .

[232]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[233]  Petr Novák,et al.  Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries , 2000 .

[234]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[235]  K. Striebel,et al.  Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes , 2000 .

[236]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[237]  Arthur D. Pelton,et al.  The Na-S (Sodium-Sulfur) System , 1997 .

[238]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[239]  H. Okamoto The Li-S (lithium-sulfur) system , 1995 .

[240]  A. Pelton,et al.  The Li-O (lithium-oxygen) system , 1992 .

[241]  Doron Aurbach,et al.  The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts , 1991 .

[242]  R. Huggins Solid State Ionics , 1989 .

[243]  E. Peled,et al.  Lithium‐Sulfur Battery: Evaluation of Dioxolane‐Based Electrolytes , 1989 .

[244]  H. Wriedt The Na−O (Sodium-Oxygen) System , 1987 .

[245]  J. Hafner Alloy Phase Diagrams , 1987 .

[246]  B. J. Aylett Chemistry of the elements , 1985 .

[247]  L. Napolitano Materials , 1984, Science.

[248]  K. Abraham Status of rechargeable positive electrodes for ambient temperature lithium batteries , 1981 .

[249]  G. Weddigen Electrical Data of Sodium/Sulfur Cells Operating with Dissolved Catholyte , 1980 .

[250]  K. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[251]  W. J. Argersinger,et al.  The Absorption of Oxygen by Sodium Peroxide: Preparation and Magnetic Properties of Sodium Superoxide , 1949 .

[252]  J. R.,et al.  Chemistry , 1929, Nature.

[253]  A. S.,et al.  Lehrbuch der Anorganischen Chemie , 1900, Nature.