Prévision hydrologique par réseaux de neurones artificiels : état de l'art

Artificial neural networks (ANN) are a novel approximation method for complex systems especially useful when the well-known statistical methods are not efficient. The multilayer perceptrons have been mainly used for hydrological forecasting over the last years. However, the connectionist theory and language are not much known to the hydrologist communauty. This paper aims to make up this gap. The ANN architectures and learning rules are presented to allow the best choice of their application. Stochastic methods and the neural network approach are compared in terms of methodology steps in the context of hydrological forecasting. Recent applications in hydrology are documented and discussed in the conclusion.Key words: artificial neural networks, hydrological forecasting, stochastic models, multilayer perceptrons.

[1]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory, Third Edition , 1989, Springer Series in Information Sciences.

[2]  Eric Y. Zhang,et al.  Forecasting Water Availability by Applying Neural Networks with Global and Solar Indices , 1996 .

[3]  Jason Smith,et al.  Neural-Network Models of Rainfall-Runoff Process , 1995 .

[4]  Rorbert Griñó Cubero Neural Networks for Water Demand Time Series Forecasting , 1991 .

[5]  M. J. D. Powell,et al.  Restart procedures for the conjugate gradient method , 1977, Math. Program..

[6]  Halbert White,et al.  Artificial Neural Networks: Approximation and Learning Theory , 1992 .

[7]  C. L. Giles,et al.  Dynamic recurrent neural networks: Theory and applications , 1994, IEEE Trans. Neural Networks Learn. Syst..

[8]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[9]  P. C. Pandey,et al.  Application of artificial neural networks in hydrological modeling: a case study of runoff simulation of a Himalayan glacier basin , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[10]  D. Dartus,et al.  Utilisation d'un réseau neuronal pour l'étude de la propagation d'une onde de crue dans un canal , 1993 .

[11]  C. J. Stone,et al.  Local asymptotic admissibility of a generalization of Akaike's model selection rule , 1982 .

[12]  I. Dimopoulos,et al.  Modélisation de la relation pluie-débit par les réseaux connexionnistes et le filtre de Kalman , 1996 .

[13]  Lutz Prechelt,et al.  A quantitative study of experimental evaluations of neural network learning algorithms: Current research practice , 1996, Neural Networks.

[14]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[15]  Nassir El-Jabi,et al.  Predicting conductivity and acidity for small streams using neural networks , 1997 .

[16]  Ching-Gung Wen,et al.  A neural network approach to multiobjective optimization for water quality management in a river basin , 1998 .

[17]  Hung Man Tong,et al.  Threshold models in non-linear time series analysis. Lecture notes in statistics, No.21 , 1983 .

[18]  Eugenio Gorgucci,et al.  Radar and Surface Measurement of Rainfall during CaPE: 26 July 1991 Case Study , 1995 .

[19]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[20]  Witold F. Krajewski,et al.  Rainfall forecasting in space and time using a neural network , 1992 .

[21]  Jyh-Shing Roger Jang,et al.  Self-learning fuzzy controllers based on temporal backpropagation , 1992, IEEE Trans. Neural Networks.

[22]  H. Tong,et al.  Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .

[23]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[24]  Liang Li,et al.  Nonlinear adaptive prediction of nonstationary signals , 1995, IEEE Trans. Signal Process..

[25]  A. Lapedes,et al.  Nonlinear signal processing using neural networks: Prediction and system modelling , 1987 .

[26]  José R. Dorronsoro,et al.  Neural fraud detection in credit card operations , 1997, IEEE Trans. Neural Networks.

[27]  J. S. Marshall,et al.  PRECIPITATION TRAJECTORIES AND PATTERNS , 1953 .

[28]  Martin T. Hagan,et al.  Neural network design , 1995 .

[29]  Robert M. Pap,et al.  Handbook of neural computing applications , 1990 .

[30]  Dominic Palmer-Brown,et al.  Modeling complex environmental data , 1997, IEEE Trans. Neural Networks.

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[33]  K. Hipel,et al.  Time series modelling of water resources and environmental systems , 1994 .

[34]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[35]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[36]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[37]  Qing Zhang,et al.  Forecasting raw-water quality parameters for the North Saskatchewan River by neural network modeling , 1997 .

[38]  Peter R. Winters,et al.  Forecasting Sales by Exponentially Weighted Moving Averages , 1960 .

[39]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[40]  B. Irie,et al.  Capabilities of three-layered perceptrons , 1988, IEEE 1988 International Conference on Neural Networks.

[41]  Nikola Kasabov,et al.  Foundations Of Neural Networks, Fuzzy Systems, And Knowledge Engineering [Books in Brief] , 1996, IEEE Transactions on Neural Networks.

[42]  David Haussler,et al.  What Size Net Gives Valid Generalization? , 1989, Neural Computation.

[43]  Les E. Atlas,et al.  Recurrent neural networks and robust time series prediction , 1994, IEEE Trans. Neural Networks.

[44]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[45]  Jacek M. Zurada,et al.  Introduction to artificial neural systems , 1992 .

[46]  Michel Verleysen,et al.  Les Réseaux de Neurones Artificiels , 1996 .

[47]  Geoffrey E. Hinton Deterministic Boltzmann Learning Performs Steepest Descent in Weight-Space , 1989, Neural Computation.

[48]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[49]  Emmanouil N. Anagnostou,et al.  A neural network approach to estimating rainfall from spaceborne microwave data , 1997, IEEE Trans. Geosci. Remote. Sens..

[50]  Howell Tong,et al.  Some Comments on the Canadian Lynx Data , 1977 .

[51]  Achilleas Zapranis,et al.  Stock performance modeling using neural networks: A comparative study with regression models , 1994, Neural Networks.

[52]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[53]  Gustavo Deco,et al.  Dynamic modeling of chaotic time series by neural networks , 1997, Annual Conference Computational Learning Theory.

[54]  K. Thirumalaiah,et al.  River Stage Forecasting Using Artificial Neural Networks , 1998 .

[55]  D. M. Kammen,et al.  Quadrature and the development of orientation selective cortical cells by Hebb rules , 1989, Biological Cybernetics.

[56]  Bart Kosko,et al.  Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence , 1991 .

[57]  David E. Rumelhart,et al.  Predicting the Future: a Connectionist Approach , 1990, Int. J. Neural Syst..

[58]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[59]  A. Shamseldin Application of a neural network technique to rainfall-runoff modelling , 1997 .

[60]  Esko Ukkonen,et al.  Neural Networks in the Ice-Correction of Discharge Observations , 1997 .

[61]  Terrence J. Sejnowski,et al.  Parallel Networks that Learn to Pronounce English Text , 1987, Complex Syst..

[62]  A. G. Ivakhnenko,et al.  Polynomial Theory of Complex Systems , 1971, IEEE Trans. Syst. Man Cybern..

[63]  Kishan G. Mehrotra,et al.  Forecasting the behavior of multivariate time series using neural networks , 1992, Neural Networks.

[64]  Kuolin Hsu,et al.  Artificial Neural Network Modeling of the Rainfall‐Runoff Process , 1995 .

[65]  Kunihiko Fukushima,et al.  Neocognitron: A hierarchical neural network capable of visual pattern recognition , 1988, Neural Networks.

[66]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[67]  Stephen Grossberg,et al.  Studies of mind and brain , 1982 .

[68]  Geoffrey E. Hinton,et al.  How neural networks learn from experience. , 1992, Scientific American.

[69]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[70]  Mikio Takagi,et al.  Rainfall prediction of geostationary meteorological satellite images using artificial neural network , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[71]  Dominic Maratukulam,et al.  ANNSTLF-a neural-network-based electric load forecasting system , 1997, IEEE Trans. Neural Networks.

[72]  Stephen Grossberg,et al.  Birth of a learning law , 1998 .

[73]  J. Friedman Multivariate adaptive regression splines , 1990 .

[74]  Shun-ichi Amari,et al.  Network information criterion-determining the number of hidden units for an artificial neural network model , 1994, IEEE Trans. Neural Networks.

[75]  E. Parzen Some recent advances in time series modeling , 1974 .

[76]  R.-H. Liang,et al.  Scheduling of hydroelectric generations using artificial neural networks , 1994 .

[77]  Paul A. Fishwick,et al.  Time series forecasting using neural networks vs. Box- Jenkins methodology , 1991, Simul..

[78]  J. Changeux,et al.  Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks , 1976, Nature.

[79]  Bernard Bobée,et al.  Revue bibliographique des méthodes de prévision des débits , 1997 .

[80]  David Horn,et al.  Learning the Rule of a Time Series , 1992, Int. J. Neural Syst..

[81]  Robert A. Jacobs,et al.  A Bayesian Approach to Model Selection in Hierarchical Mixtures-of-Experts Architectures , 1997, Neural Networks.

[82]  Stephan Rudolph,et al.  On topology, size and generalization of non-linear feed-forward neural networks , 1997, Neurocomputing.

[83]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[84]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[85]  S. Grossberg Neural Networks and Natural Intelligence , 1988 .

[86]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[87]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[88]  V. Chandrasekar,et al.  Development of a neural network based algorithm for rainfall estimation from radar observations , 1997, IEEE Trans. Geosci. Remote. Sens..

[89]  J. L. Crespo,et al.  Drought estimation with neural networks , 1993 .

[90]  James M. Ehrman,et al.  Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers , 1998 .

[91]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[92]  Harry B. Burke,et al.  Statistical Analysis of Complex Systems in Biomedicine , 1995, AISTATS.

[93]  P. Lewis,et al.  Nonlinear Modeling of Time Series Using Multivariate Adaptive Regression Splines (MARS) , 1991 .

[94]  H. R. Maier,et al.  Modelling Cyanbacteria (blue-green algae) in the River Murray using artificial neural networks , 1997 .

[95]  James V. Hansen,et al.  Neural networks and traditional time series methods: a synergistic combination in state economic forecasts , 1997, IEEE Trans. Neural Networks.

[96]  Chng Eng Siong,et al.  Gradient radial basis function networks for nonlinear and nonstationary time series prediction , 1996, IEEE Trans. Neural Networks.

[97]  Bernard Widrow,et al.  30 years of adaptive neural networks: perceptron, Madaline, and backpropagation , 1990, Proc. IEEE.

[98]  Bernard Bobée,et al.  Daily reservoir inflow forecasting using artificial neural networks with stopped training approach , 2000 .

[99]  Nachimuthu Karunanithi,et al.  Neural Networks for River Flow Prediction , 1994 .

[100]  David G. Kinniburgh,et al.  Sources of recharge at Abu Delaig, Sudan , 1992 .

[101]  Brian D. Ripley,et al.  Statistical aspects of neural networks , 1993 .

[102]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[103]  Andreas S. Weigend,et al.  Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .

[104]  A. Turgeon,et al.  Fuzzy Learning Decomposition for the Scheduling of Hydroelectric Power Systems , 1996 .

[105]  Marie Cottrell,et al.  Neural modeling for time series: A statistical stepwise method for weight elimination , 1995, IEEE Trans. Neural Networks.

[106]  Howell Tong Some comments on the Canadian Lynx data with discussion , 1977 .

[107]  Ming Zhang,et al.  Rainfall estimation using artificial neural network group , 1997, Neurocomputing.

[108]  Paul J. Werbos,et al.  Applications of advances in nonlinear sensitivity analysis , 1982 .

[109]  Ingoo Han,et al.  Hybrid neural network models for bankruptcy predictions , 1996, Decis. Support Syst..

[110]  H. Maier,et al.  The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters , 1996 .

[111]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[112]  Thomas Kolarik,et al.  Time series forecasting using neural networks , 1994, APL '94.