A finite volume method on NURBS geometries and its application in isogeometric fluid-structure interaction
暂无分享,去创建一个
[1] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[2] W. Wall,et al. Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .
[3] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[4] F. Brezzi,et al. On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .
[5] H. Jasak,et al. Automatic mesh motion for the unstructured finite volume method , 2007 .
[6] Giancarlo Sangalli,et al. IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .
[7] Martin Aigner,et al. Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.
[8] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[9] Wolfgang Dahmen,et al. Parametric multi-block grid generation and application to adaptive flow simulations , 2007 .
[10] Linda R. Petzold,et al. Runge-Kutta-Chebyshev projection method , 2006, J. Comput. Phys..
[11] Anh-Vu Vuong,et al. ISOGAT: A 2D tutorial MATLAB code for Isogeometric Analysis , 2010, Comput. Aided Geom. Des..
[12] Thomas J. R. Hughes,et al. Nonlinear Isogeometric Analysis , 2009 .
[13] Ben Q. Li. Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer , 2005 .
[14] Robert Eymard,et al. A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.
[15] C. Fletcher. Computational techniques for fluid dynamics , 1992 .
[16] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[17] Wolfgang A. Wall. Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen , 1999 .
[18] R. EYMARD,et al. Convergence Analysis of a Colocated Finite Volume Scheme for the Incompressible Navier-Stokes Equations on General 2D or 3D Meshes , 2007, SIAM J. Numer. Anal..
[19] Vladimir D. Liseikin,et al. Grid Generation Methods , 1999 .
[20] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[21] P. Thomas,et al. Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .
[22] Joel H. Ferziger,et al. Computational methods for fluid dynamics , 1996 .
[23] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[24] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[25] Anh-Vu Vuong,et al. On Isogeometric Analysis and Its Usage for Stress Calculation , 2009, HPSC.
[26] Roland Wüchner,et al. Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .
[27] Miloslav Feistauer,et al. Mathematical and Computational Methods for Compressible Flow , 2003 .
[28] T. Hughes,et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .
[29] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[30] T. Hughes,et al. Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .
[31] Régis Duvigneau,et al. Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .
[32] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .