A finite volume method on NURBS geometries and its application in isogeometric fluid-structure interaction

A finite volume method for geometries parameterized by Non-Uniform Rational B-Splines (NURBS) is proposed. Since the computational grid is inherently defined by the knot vectors of the NURBS parameterization, the mesh generation step simplifies here greatly and furthermore curved boundaries are resolved exactly. Based on the incompressible Navier-Stokes equations, the main steps of the discretization are presented, with emphasis on the preservation of geometrical and physical properties. Moreover, the method is combined with a structural solver based on isogeometric finite elements in a partitioned fluid-structure interaction coupling algorithm that features a gap-free and non-overlapping interface even in the case of non-matching grids.

[1]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[2]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[3]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[4]  F. Brezzi,et al.  On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .

[5]  H. Jasak,et al.  Automatic mesh motion for the unstructured finite volume method , 2007 .

[6]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[7]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[8]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[9]  Wolfgang Dahmen,et al.  Parametric multi-block grid generation and application to adaptive flow simulations , 2007 .

[10]  Linda R. Petzold,et al.  Runge-Kutta-Chebyshev projection method , 2006, J. Comput. Phys..

[11]  Anh-Vu Vuong,et al.  ISOGAT: A 2D tutorial MATLAB code for Isogeometric Analysis , 2010, Comput. Aided Geom. Des..

[12]  Thomas J. R. Hughes,et al.  Nonlinear Isogeometric Analysis , 2009 .

[13]  Ben Q. Li Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer , 2005 .

[14]  Robert Eymard,et al.  A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.

[15]  C. Fletcher Computational techniques for fluid dynamics , 1992 .

[16]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[17]  Wolfgang A. Wall Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen , 1999 .

[18]  R. EYMARD,et al.  Convergence Analysis of a Colocated Finite Volume Scheme for the Incompressible Navier-Stokes Equations on General 2D or 3D Meshes , 2007, SIAM J. Numer. Anal..

[19]  Vladimir D. Liseikin,et al.  Grid Generation Methods , 1999 .

[20]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[21]  P. Thomas,et al.  Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .

[22]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[23]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[24]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[25]  Anh-Vu Vuong,et al.  On Isogeometric Analysis and Its Usage for Stress Calculation , 2009, HPSC.

[26]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[27]  Miloslav Feistauer,et al.  Mathematical and Computational Methods for Compressible Flow , 2003 .

[28]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[29]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[30]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[31]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[32]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .