Study of nanoindentation behavior of amorphous alloy using molecular dynamics

Abstract Molecular dynamics is employed to study the nanoindentation process of Cu50Zr50 amorphous alloy. Deformation behavior of the substrate during indentation process is studied. The effects of indentation depth, loading speed, indenter radius, temperature and adhesion interaction on nanoindentation process are thoroughly investigated. It is found that shear transformation zones constantly migrate and grow during the indentation process. There is no obvious pile-up during indentation process for the indentation depth studied. A bigger indentation depth, loading speed and indenter radius result in a larger load. The indenter radius has no significant effect on the material properties, while a larger loading speed leads to the increase of the material's hardness and elastic modulus. The temperature greatly affects the material's properties. With the increase of temperature, the load and hardness decrease whereas the elastic modulus tends to go up. The hardness is slightly larger when considering the adhesion interaction between indenter and substrate, while the elastic modulus is not significantly affected.

[1]  Jiwang Yan,et al.  Research on the effects of machining-induced subsurface damages on mono-crystalline silicon via molecular dynamics simulation , 2012 .

[2]  Kevin T. Turner,et al.  Friction laws at the nanoscale , 2009, Nature.

[3]  S. Lee,et al.  Molecular Dynamics Simulation Studies of Benzene, Toluene, and p-Xylene in a Canonical Ensemble , 2002 .

[4]  W. H. Li,et al.  Simple phenomenological determination of contact stiffness and elastic modulus of Ce-based bulk metallic glasses through nanoindentation , 2007 .

[5]  H. Bai,et al.  Poisson's ratio and plasticity in CuZrAl bulk metallic glasses , 2008 .

[6]  Molecular Dynamics Analyze on Effects of Abrasive Size and Cut Depth on the Monocrystal Silicon Grinding , 2006 .

[7]  Julia R Greer,et al.  Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. , 2010, Nature materials.

[8]  P. Murali,et al.  Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. , 2011, Physical review letters.

[9]  A. Molinari,et al.  Insights into the thermo-mechanics of orthogonal nanometric machining , 2013 .

[10]  Yongqing Cai,et al.  Mechanical behavior of Cu—Zr bulk metallic glasses (BMGs): A molecular dynamics approach , 2013 .

[11]  C. Chan,et al.  A molecular dynamics simulation of the mechanical characteristics of a C60-filled carbon nanotube under nanoindentation using various carbon nanotube tips , 2011 .

[12]  Y. Milman,et al.  Microindentations on W and Mo oriented single crystals: An STM study , 1993 .

[13]  H. Bei,et al.  Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter. , 2004, Physical review letters.

[14]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[15]  Yunfeng Shi,et al.  Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass , 2007 .

[16]  William D. Nix,et al.  The Role of Indentation Depth on the Measured Hardness of Materials , 1993 .

[17]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[18]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[19]  Mingwei Chen,et al.  Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses , 2008, Proceedings of the National Academy of Sciences.

[20]  Shengfeng Cheng,et al.  Defining Contact at the Atomic Scale , 2010, 1004.1202.

[21]  H. Lee,et al.  Large scale molecular dynamics study of nanometric machining of copper , 2007 .

[22]  Jiangong Li,et al.  The correlation between shear elastic modulus and glass transition temperature of bulk metallic glasses , 2009 .

[23]  Wei Zhang,et al.  Microstructure Feature of Bulk Glassy Cu60Zr30Ti10 Alloy in As-cast and Annealed States. , 2002 .

[24]  J. C. Huang,et al.  Characteristic difference between ITO/ZrCu and ITO/Ag bi-layer films as transparent electrodes deposited on PET substrate , 2010 .

[25]  Weihua Wang,et al.  Bulk metallic glasses , 2004 .

[26]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[27]  J. Chu,et al.  On annealing-induced amorphization and anisotropy in a ferromagnetic Fe-based film : A magnetic and property study , 2006 .

[28]  K. Jacobsen,et al.  Computer simulations of nanoindentation in Mg–Cu and Cu–Zr metallic glasses , 2010 .

[29]  J. Chu Annealing-induced amorphization in a glass-forming thin film , 2009 .

[30]  C. Lim,et al.  Nanoindentation study of nanofibers , 2005 .

[31]  Ju Li,et al.  Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations , 2007 .

[32]  Donald W. Brenner,et al.  Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data , 2004 .

[33]  Christopher A. Schuh,et al.  Initiation of shear bands near a stress concentration in metallic glass , 2007 .

[34]  F. Sansoz,et al.  Molecular dynamics study of crystal plasticity during nanoindentation in Ni nanowires , 2009 .

[35]  Jen Fin Lin,et al.  Atomistic simulations of hard and soft films under nanoindentation , 2007 .

[36]  Subhash Saini,et al.  Nanoindentation of silicon nitride: A multimillion-atom molecular dynamics study , 2003 .

[37]  Lars Hultman,et al.  Microstructural evolution during film growth , 2003 .

[38]  Claude M. Penchina,et al.  The physics of amorphous solids , 1983 .

[39]  Jianbin Luo,et al.  Planarization process of single crystalline silicon asperity under abrasive rolling effect studied by molecular dynamics simulation , 2012 .

[40]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .

[41]  Evan Ma,et al.  Shear bands in metallic glasses , 2013 .

[42]  Fengzhou Fang,et al.  Study of nanoscratching of polymers by using molecular dynamics simulations , 2013 .

[43]  J. Baram,et al.  Estimation of the glass transition temperature in metallic glasses , 1996 .

[44]  Jee-Gong Chang,et al.  Molecular dynamics analysis of temperature effects on nanoindentation measurement , 2003 .

[45]  Yunfeng Shi,et al.  Simulations of nanoindentation in a thin amorphous metal film , 2007 .

[46]  F. Wu,et al.  Superelongation and atomic chain formation in nanosized metallic glass. , 2010, Physical review letters.

[47]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[48]  J. S. Jang,et al.  Surface Antimicrobial Effects of Zr61Al7.5Ni10Cu17.5Si4 Thin Film Metallic Glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans , 2010 .

[49]  X. Gong,et al.  Dynamical multiscale simulation of nanoindentation , 2011 .

[50]  Weihua Wang The elastic properties, elastic models and elastic perspectives of metallic glasses , 2012 .

[51]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[52]  Albert J. Shih,et al.  Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass , 2004 .

[53]  Hertz On the Contact of Elastic Solids , 1882 .

[54]  M. Kramer,et al.  Development of suitable interatomic potentials for simulation of liquid and amorphous Cu–Zr alloys , 2009 .

[55]  J. C. Huang,et al.  Thin film metallic glasses: Unique properties and potential applications , 2012 .

[56]  R. Dauskardt,et al.  Characterization of Free Volume in a Bulk Metallic Glass Using Positron Annihilation Spectroscopy , 2002 .

[57]  C. Shek,et al.  Thermal and mechanical properties of Cu–Zr–Al bulk metallic glasses , 2007 .

[58]  W. Johnson,et al.  Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures , 2003 .

[59]  F. Fang,et al.  Molecular dynamics simulations of nanoindentation of monocrystalline germanium , 2012, Applied Physics A.

[60]  Emmanuel P. Papadakis,et al.  Ultrasonic Phase Velocity by the Pulse‐Echo‐Overlap Method Incorporating Diffraction Phase Corrections , 1967 .

[61]  Weihua Wang,et al.  Glass transition behavior, crystallization kinetics, and microstructure change of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass under high pressure , 2000 .

[62]  F. Fang,et al.  On the mechanism of material removal in nanometric cutting of metallic glass , 2014 .

[63]  J. Barrat,et al.  Plastic response of a 2D Lennard-Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain rate , 2006, The European physical journal. E, Soft matter.

[64]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[65]  W. Wang,et al.  Superior glass-forming ability of CuZr alloys from minor additions , 2006 .

[66]  F. Fang,et al.  Multiscale simulations of nanoindentation and nanoscratch of single crystal copper , 2012 .

[67]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[68]  T. Inamura,et al.  Atomic-scale cutting in a computer using crystal models of copper and diamond , 1992 .

[69]  O. Rodríguez de la Fuente,et al.  Plastic properties of gold surfaces nanopatterned by ion beam sputtering , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[70]  Hui Wang,et al.  Study of effect of indenter shape in nanometric scratching process using molecular dynamics , 2011 .

[71]  T. G. Nieh,et al.  Unified equation for the strength of bulk metallic glasses , 2006 .