Bayesian Markov Chain Monte Carlo Model for Determining Optimum Tender Price in Multifamily Housing Projects

AbstractThis study presents a strategy model for determining the optimum tender price that reflects appropriate profit and risk contingencies in competitive tendering according to the Bayesian Markov Chain Monte Carlo (BMCMC) model. The BMCMC approach is known to be theoretically optimal for handling tender-price problems. The BMCMC model provides a practical solution that can reflect not only objective information but also subjective experience and knowledge. The BMCMC model allows contractors to estimate the tender price more accurately by reflecting the prior distribution function on key factors. Conclusively, this model was found to improve decision-making processes for setting an optimum tender price. An applied example showed that the proposed methods are feasible.

[1]  A. J. Clemmens,et al.  Bayesian Inference for Feedback Control. I: Theory , 1992 .

[2]  Kenneth F. Reinschmidt,et al.  Effects of Contractors’ Risk Attitude on Competition in Construction , 2011 .

[3]  David Heckerman,et al.  Bayesian Networks for Data Mining , 2004, Data Mining and Knowledge Discovery.

[4]  S. Thomas Ng,et al.  Forecast models for actual construction time and cost , 2003 .

[5]  David Arditi,et al.  Pricing strategy in the US construction industry , 2001 .

[6]  Phillip F. Ostwald,et al.  Construction cost analysis and estimating , 2000 .

[7]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[8]  Tarek Hegazy,et al.  DBID: Analogy‐Based DSS for Bidding in Construction , 1993 .

[9]  Garold D. Oberlender,et al.  Predicting Accuracy of Early Cost Estimates using Factor Analysis and Multivariate Regression , 2003 .

[10]  Sang-Bum Kim,et al.  Effective Methods for Improving Naive Bayes Text Classifiers , 2002, PRICAI.

[11]  Martin Skitmore,et al.  Developments in contract price forecasting and bidding techniques , 1990 .

[12]  Alan J. Miller,et al.  Subset Selection in Regression , 1991 .

[13]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[14]  D. Lowe,et al.  Predicting construction cost using multiple regression techniques , 2006 .

[15]  Sunghyuk Park,et al.  A Strategy Bayesian Model to Predict Profit of Construction Projects , 2011 .

[16]  John Kelly,et al.  Artificial intelligence - a modern myth , 1993, Ellis Horwood series in artificial intelligence.

[17]  P. Allison Multiple Regression: A Primer , 1994 .

[18]  W. M. Bolstad Introduction to Bayesian Statistics , 2004 .

[19]  Franco Caron,et al.  Multi-criteria assessment of the probability of winning in the competitive bidding process , 2001 .

[20]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[21]  Kenneth F. Reinschmidt,et al.  A dynamic competition model for construction contractors , 2006 .

[22]  R. McCaffer,et al.  Predicting the Tender Price of Buildings during Early Design: Method and Validation , 1984 .

[23]  Ronald McCaffer,et al.  Contractors' bidding behaviour and tender price prediction , 1976 .

[24]  Sangyong Kim,et al.  Hybrid forecasting system based on case-based reasoning and analytic hierarchy process for cost estimation , 2013 .

[25]  Peter E.D. Love,et al.  Building Design Cost Management , 2002 .

[26]  A. Atkinson Subset Selection in Regression , 1992 .

[27]  L. Friedman A Competitive-Bidding Strategy , 1956 .

[28]  S. Sinha Introduction to Bayesian Statistics (2nd ed.) , 2008 .

[29]  D. Whetten What Constitutes a Theoretical Contribution , 1989 .

[30]  George E. P. Box,et al.  Bayesian Inference in Statistical Analysis: Box/Bayesian , 1992 .

[31]  David Heckerman,et al.  An empirical comparison of three inference methods , 2013, UAI.

[32]  Paolo Gardoni,et al.  A Probabilistic Framework for Bayesian Adaptive Forecasting of Project Progress , 2007, Comput. Aided Civ. Infrastructure Eng..

[33]  Finn Verner Jensen,et al.  Introduction to Bayesian Networks , 2008, Innovations in Bayesian Networks.

[34]  Min Liu,et al.  Modeling a Contractor’s Markup Estimation , 2005 .

[35]  Joseph G. Nellis,et al.  The Essence of Business Economics , 1997 .

[36]  Joseph G. Ibrahim,et al.  Monte Carlo Methods in Bayesian Computation , 2000 .

[37]  E. George The Variable Selection Problem , 2000 .