Recurrence, Dimensions, and Lyapunov Exponents

We show that the Poincaré return time of a typical cylinder is at least its length. For one dimensional maps we express the Lyapunov exponent and dimension via return times.

[1]  F. Hofbauer,et al.  The Hausdorff Dimension of an Ergodic Invariant Measure for a Piecewise Monotonic Map of the Interval , 1992, Canadian Mathematical Bulletin.

[2]  H. White Algorithmic complexity of points in dynamical systems , 1993, Ergodic Theory and Dynamical Systems.

[3]  V. Afraimovich,et al.  Pesin's dimension for Poincare recurrences. , 1997, Chaos.

[4]  Sandro Vaienti,et al.  Statistics of Return Times:¶A General Framework and New Applications , 1999 .

[5]  A. J. Sarantakis,et al.  Entropy and data compression , 1970 .

[6]  Valentin Afraimovich,et al.  Pointwise dimensions for Poincaré recurrences associated with maps and special flows , 2002 .

[7]  K. Petersen,et al.  On the algorithmic complexity of the trajectories of points in dynamical systems , 1991 .

[8]  Luis Barreira,et al.  Hausdorff Dimension of Measures¶via Poincaré Recurrence , 2001 .

[9]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[10]  A. Brudno Entropy and the complexity of the trajectories of a dynamical system , 1978 .

[11]  F. Hofbauer An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map of the interval , 1991 .

[12]  Yuri M. Suhov,et al.  Nonparametric Entropy Estimation for Stationary Processesand Random Fields, with Applications to English Text , 1998, IEEE Trans. Inf. Theory.

[13]  Sandro Vaienti,et al.  Multifractal properties of return time statistics. , 2001, Physical review letters.

[14]  F. Hofbauer Local dimension for piecewise monotonic maps on the interval , 1995, Ergodic Theory and Dynamical Systems.

[15]  Anthony Quas,et al.  AN ENTROPY ESTIMATOR FOR A CLASS OF INFINITE ALPHABET PROCESSES , 1999 .

[16]  L. Barreira,et al.  Product structure of Poincaré recurrence , 2002, Ergodic Theory and Dynamical Systems.

[17]  Sandro Vaienti,et al.  Dimensions for recurrence times: topological and dynamical properties , 1999 .