Recurrence, Dimensions, and Lyapunov Exponents
暂无分享,去创建一个
[1] F. Hofbauer,et al. The Hausdorff Dimension of an Ergodic Invariant Measure for a Piecewise Monotonic Map of the Interval , 1992, Canadian Mathematical Bulletin.
[2] H. White. Algorithmic complexity of points in dynamical systems , 1993, Ergodic Theory and Dynamical Systems.
[3] V. Afraimovich,et al. Pesin's dimension for Poincare recurrences. , 1997, Chaos.
[4] Sandro Vaienti,et al. Statistics of Return Times:¶A General Framework and New Applications , 1999 .
[5] A. J. Sarantakis,et al. Entropy and data compression , 1970 .
[6] Valentin Afraimovich,et al. Pointwise dimensions for Poincaré recurrences associated with maps and special flows , 2002 .
[7] K. Petersen,et al. On the algorithmic complexity of the trajectories of points in dynamical systems , 1991 .
[8] Luis Barreira,et al. Hausdorff Dimension of Measures¶via Poincaré Recurrence , 2001 .
[9] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[10] A. Brudno. Entropy and the complexity of the trajectories of a dynamical system , 1978 .
[11] F. Hofbauer. An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map of the interval , 1991 .
[12] Yuri M. Suhov,et al. Nonparametric Entropy Estimation for Stationary Processesand Random Fields, with Applications to English Text , 1998, IEEE Trans. Inf. Theory.
[13] Sandro Vaienti,et al. Multifractal properties of return time statistics. , 2001, Physical review letters.
[14] F. Hofbauer. Local dimension for piecewise monotonic maps on the interval , 1995, Ergodic Theory and Dynamical Systems.
[15] Anthony Quas,et al. AN ENTROPY ESTIMATOR FOR A CLASS OF INFINITE ALPHABET PROCESSES , 1999 .
[16] L. Barreira,et al. Product structure of Poincaré recurrence , 2002, Ergodic Theory and Dynamical Systems.
[17] Sandro Vaienti,et al. Dimensions for recurrence times: topological and dynamical properties , 1999 .