Timetable Synchronization of Mass Rapid Transit System Using Multiobjective Evolutionary Approach

Users of mass rapid transit are often required to make transfers between different train lines to reach their destinations. Timetable synchronization minimizes delays during such transfers. This paper formulates a novel measure for timetable synchronization by means of a total passenger dissatisfaction index (TPDI); and the impact of such synchronization on the original unsynchronized timetable is accounted using a total deviation index (TDV) that assigns penalties when deviations from the original timetable are incurred. Pareto fronts displaying the relationship between TPDI and TDV are generated using the state-of-the-art nondominated sorting genetic algorithm 2 (NSGA 2). To further improve NSGA 2, three schemes-the use of a variant of the NSGA2 with differential evolution, a process we termed "seeding," and finally a hybrid combination with local search techniques like heuristic hill climbing, tabu search, and simulated annealing - are proposed. Simulation results demonstrate that the "seeded" NSGA2-DE combined with the hill climbing heuristic produce the best results for the application. Solutions from the Pareto fronts are chosen for implementation to describe the different operating regions. A discussion section details the advantages and drawbacks of the proposed schemes.

[1]  M. Farina,et al.  On the optimal solution definition for many-criteria optimization problems , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[2]  Vilfredo Pareto Un’applicazione di teorie sociologiche , 1980 .

[3]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[4]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[5]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[6]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[7]  Chung Min Kwan,et al.  Evaluation of Evolutionary Algorithms for Multi-objective Train Schedule Optimization , 2004, Australian Conference on Artificial Intelligence.

[8]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[9]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[10]  Yaochu Jin,et al.  Dynamic Weighted Aggregation for evolutionary multi-objective optimization: why does it work and how? , 2001 .

[11]  Marco Laumanns,et al.  Self-adaptation and Convergence of Multiobjective Evolutionary Algorithms in Continuous Search Spaces , 2005, Evolutionary Multiobjective Optimization.

[12]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[13]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[14]  JANNY M. Y. LEUNG,et al.  Timetable Synchronization for Mass Transit , 2008 .

[15]  Prabhat Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[16]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[17]  K. Deb,et al.  Hybrid methods for multi-objective evolutionary algorithms , 2002 .

[18]  Marco Farina,et al.  A fuzzy definition of "optimality" for many-criteria optimization problems , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[19]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[20]  Chung Min Kwan,et al.  Application of evolutionary algorithm on a transportation scheduling problem - the mass rapid transit , 2005, 2005 IEEE Congress on Evolutionary Computation.

[21]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[22]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[23]  Rob M.P. Goverde,et al.  Synchronization Control of Scheduled Train Services to Minimize Passenger Waiting Times , 1998 .

[24]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[25]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[26]  Rolf H. Möhring,et al.  A Case Study in Periodic Timetabling , 2002, ATMOS.

[27]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[28]  Janny M. Y. Leung,et al.  TIMETABLE SYNCHRONIZATION FOR MASS TRANSIT RAILWAYS , 2006 .

[29]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[30]  John R. Schroeter,et al.  The Values of Waiting Time, Travel Time, and a Seat on a Bus , 1987 .

[31]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[32]  Stefan Voß,et al.  Practical Experiences in Schedule Synchronization , 1995 .

[33]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..