Evolutionary Algorithms for the Multiobjective Shortest Path Problem

This paper presents an overview of the multiobjective shortest path problem (MSPP) and a review of essential and recent issues regarding the methods to its solution. The paper further explores a multiobjective evolutionary algorithm as applied to the MSPP and describes its behavior in terms of diversity of solutions, computational complexity, and optimality of solutions. Results show that the evolutionary algorithm can find diverse solutions to the MSPP in polynomial time (based on several network instances) and can be an alternative when other methods are trapped by the tractability problem. Keywords—Multiobjective evolutionary optimization, genetic algorithms, shortest paths.

[1]  Christos D. Zaroliagis,et al.  Multiobjective Optimization: Improved FPTAS for Shortest Paths and Non-Linear Objectives with Applications , 2006, Theory of Computing Systems.

[2]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Jorge Crichigno,et al.  A Multicast Routing Algorithm Using Multiobjective Optimization , 2004, ICT.

[5]  Carlos A. Coello Coello,et al.  An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.

[6]  Francesca Guerriero,et al.  The interactive analysis of the multicriteria shortest path problem by the reference point method , 2003, Eur. J. Oper. Res..

[7]  Adam C. Winstanley,et al.  An evolutionary algorithm for multicriteria path optimization problems , 2006, Int. J. Geogr. Inf. Sci..

[8]  Arthur Warburton,et al.  Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems , 1987, Oper. Res..

[9]  João C. N. Clímaco,et al.  An interactive bi-objective shortest path approach: searching for unsupported nondominated solutions , 1999, Comput. Oper. Res..

[10]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[11]  R. Musmanno,et al.  Label Correcting Methods to Solve Multicriteria Shortest Path Problems , 2001 .

[12]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[13]  Karsten Weihe,et al.  Pareto Shortest Paths is Often Feasible in Practice , 2001, WAE.

[14]  Xavier Gandibleux,et al.  Martins' algorithm revisited for multi-objective shortest path problems with a MaxMin cost function , 2006, 4OR.

[15]  Rajeev Kumar,et al.  Multicriteria Network Design Using Evolutionary Algorithm , 2003, GECCO.

[16]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..