A Nonparametric Conditional Moment Test for Structural Stability

This paper considers a nonparametric conditional moment test of stability of an econometric model against the alternative of instability. The alternative hypothesis allows for more than one structural change, although in this case it has to be fairly smooth. This complements existing results for stability in a parametric setting. Also, it is shown that the test is always consistent, unlike the available “parametric” tests, which normally rely on the assumption of a correct specification of the model, at least under the null hypothesis of no structural instability. Moreover, we show that the test has local power comparable to the parametric ones; that is, its asymptotic efficiency is greater than zero. A Monte Carlo experiment about the performance of our test is described.

[1]  Whitney K. Newey,et al.  Maximum Likelihood Specification Testing and Conditional Moment Tests , 1985 .

[2]  P. Robinson,et al.  Nonparametric Estimation of Time-Varying Parameters , 1989 .

[3]  D. Andrews Tests for Parameter Instability and Structural Change with Unknown Change Point , 1993 .

[4]  Peter Hackl,et al.  Statistical analysis and forecasting of economic structural change , 1989 .

[5]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[6]  W. Krämer,et al.  Testing for structural change in dynamic models , 1988 .

[7]  R. Quandt Tests of the Hypothesis That a Linear Regression System Obeys Two Separate Regimes , 1960 .

[8]  Bruce E. Hansen,et al.  Tests for Parameter Instability in Regressions with I(1) Processes , 1992 .

[9]  D. Andrews,et al.  Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative , 1992 .

[10]  P. Hackl,et al.  Economic Structural Change , 1991 .

[11]  K. Yoshihara Limiting behavior of U-statistics for stationary, absolutely regular processes , 1976 .

[12]  J. Durbin,et al.  Techniques for Testing the Constancy of Regression Relationships Over Time , 1975 .

[13]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[14]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[15]  W. Krämer,et al.  A new test for structural stability in the linear regression model , 1989 .

[16]  Peter Hackl,et al.  Economic Structural Change: Analysis and Forecasting , 1991 .

[17]  M. Puri,et al.  WEAK INVARIANCE OF GENERALIZED U-STATISTICS FOR NONSTATIONARY ABSOLUTELY REGULAR PROCESSES , 1990 .

[18]  Chia-Shang James Chu,et al.  A Direct Test for Changing Trend , 1992 .

[19]  G. Chow Tests of equality between sets of coefficients in two linear regressions (econometrics voi 28 , 1960 .

[20]  F. J. Hidalgo,et al.  ADAPTIVE SEMIPARAMETRIC ESTIMATION IN THE PRESENCE OF AUTOCORRELATION OF UNKNOWN FORM , 1992 .

[21]  Herman J. Bierens,et al.  A consistent conditional moment test of functional form , 1990 .

[22]  Qi Li,et al.  A nonparametric test for poolability using panel data , 1996 .

[23]  D. Siegmund,et al.  The likelihood ratio test for a change-point in simple linear regression , 1989 .

[24]  Walter Krämer,et al.  The CUSUM test for OLS residuals , 1992 .

[25]  Michel Loève,et al.  Probability Theory I , 1977 .

[26]  Donald W. K. Andrews,et al.  Inference in Nonlinear Econometric Models with Structural Change , 1988 .