Impact of a plastid-bearing endocytobiont on apicomplexan genomes.

[1]  L. Bannister,et al.  The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. , 1999, Protist.

[2]  A. Johnson,et al.  Physical characterisation of the plastid DNA in Neospora caninum. , 1999, International journal for parasitology.

[3]  H. Lichtenthaler,et al.  Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. , 1999, Science.

[4]  M. Strath,et al.  Antibiotic inhibitors of organellar protein synthesis in Plasmodium falciparum. , 1999, Protist.

[5]  R. Wilson,et al.  Protein synthesis in the plastid of Plasmodium falciparum. , 1999, Protist.

[6]  D. Roos,et al.  Origin, targeting, and function of the apicomplexan plastid. , 1999, Current opinion in microbiology.

[7]  T. Cavalier-smith,et al.  Single gene circles in dinoflagellate chloroplast genomes , 1999, Nature.

[8]  G. McFadden,et al.  Chloroplasts: Ever decreasing circles , 1999, Nature.

[9]  J. Blanchard,et al.  The Non‐Photosynthetic Plastid in Malarial Parasites and Other Apicomplexans is Derived from Outside the Green Plastid Lineage 1 , 1999, The Journal of eukaryotic microbiology.

[10]  Susan E. Douglas,et al.  The Plastid Genome of the Cryptophyte Alga, Guillardia theta: Complete Sequence and Conserved Synteny Groups Confirm Its Common Ancestry with Red Algae , 1999, Journal of Molecular Evolution.

[11]  S Thirup,et al.  The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. , 1999, Structure.

[12]  A. Nilsson,et al.  Photosynthetic control of chloroplast gene expression , 1999, Nature.

[13]  M. R. Parsons,et al.  Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 A resolution. , 1999, Journal of molecular biology.

[14]  J. Palmer,et al.  Shikimate pathway in apicomplexan parasites , 1999, Nature.

[15]  J. Finnerty,et al.  Reply: Shikimate pathway in apicomplexan parasites , 1999, Nature.

[16]  D. Morse,et al.  The Phylogeny of Glyceraldehyde-3-Phosphate Dehydrogenase Indicates Lateral Gene Transfer from Cryptomonads to Dinoflagellates , 1998, Journal of Molecular Evolution.

[17]  P. Kroth,et al.  Protein Transport into “Complex” Diatom Plastids Utilizes Two Different Targeting Signals* , 1998, The Journal of Biological Chemistry.

[18]  E V Koonin,et al.  Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. , 1998, Science.

[19]  J. Barta,et al.  Plastids are widespread and ancient in parasites of the phylum Apicomplexa. , 1998, International journal for parasitology.

[20]  D. Roos,et al.  Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  T. McCutchan,et al.  The Antibiotic Micrococcin Is a Potent Inhibitor of Growth and Protein Synthesis in the Malaria Parasite , 1998, Antimicrobial Agents and Chemotherapy.

[22]  P. Denny,et al.  Evidence for a Single Origin of the 35 kb Plastid DNA in Apicomplexans. , 1998, Protist.

[23]  V. Weissig,et al.  Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium falciparum. , 1997, DNA and cell biology.

[24]  David S. Roos,et al.  A plastid organelle as a drug target in apicomplexan parasites , 1997, Nature.

[25]  G. McFadden,et al.  Plastids in parasites of humans. , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[26]  M. Yap,et al.  Partial nucleotide sequence and organisation of extrachromosomal plastid-like DNA in Plasmodium berghei. , 1997, Gene.

[27]  T. Taraschi,et al.  An additional mechanism of ribosome-inactivating protein cytotoxicity: degradation of extrachromosomal DNA. , 1997, The Biochemical journal.

[28]  Z. Bonday,et al.  Heme Biosynthesis by the Malarial Parasite , 1997, The Journal of Biological Chemistry.

[29]  T. Börner,et al.  Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. , 1997, Science.

[30]  P. Sigler,et al.  Crystal structure of the EF-Tu˙EF-Ts complex from Thermus thermophilus , 1997, Nature Structural Biology.

[31]  D. Draper,et al.  Interaction of thiostrepton with an RNA fragment derived from the plastid-encoded ribosomal RNA of the malaria parasite. , 1997, RNA.

[32]  W. Martin,et al.  The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis , 1997, Current Genetics.

[33]  D. Sankoff,et al.  An ancestral mitochondrial DNA resembling a eubacterial genome in miniature , 1997, Nature.

[34]  M. Strath,et al.  Thiostrepton binds to malarial plastid rRNA , 1997, FEBS letters.

[35]  J. Palmer,et al.  A Plastid of Probable Green Algal Origin in Apicomplexan Parasites , 1997, Science.

[36]  J. Palmer,et al.  Organelle genomes: going, going, gone! , 1997, Science.

[37]  Rolf Hilgenfeld,et al.  An α to β conformational switch in EF-Tu , 1996 .

[38]  S Thirup,et al.  Helix unwinding in the effector region of elongation factor EF-Tu-GDP. , 1996, Structure.

[39]  G. Amati,et al.  An elongation factor Tu (EF‐Tu) resistant to the EF‐Tu inhibitor GE2270 in the producing organism Planobispora rosea , 1996, Molecular microbiology.

[40]  R. Wilson,et al.  Organelle DNAs: The bit players in malaria parasite DNA replication. , 1996, Parasitology today.

[41]  M. Strath,et al.  Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. , 1996, Journal of molecular biology.

[42]  J. Palmer,et al.  Second-hand chloroplasts and the case of the disappearing nucleus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Geoffrey I. McFadden,et al.  Plastid in human parasites , 1996, Nature.

[44]  Zbigniew Dauter,et al.  Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay–Sachs disease , 1996, Nature Structural Biology.

[45]  Michael Wulff,et al.  The structure of the Escherichia coli EF-Tu· EF-Ts complex at 2.5 Å resolution , 1996, Nature.

[46]  M. Strath,et al.  Recombination associated with replication of malarial mitochondrial DNA. , 1996, The EMBO journal.

[47]  M. R. O'Brian,et al.  A Mutant Bradyrhizobium japonicum δ-Aminolevulinic Acid Dehydratase with an Altered Metal Requirement Functions in Situ for Tetrapyrrole Synthesis in Soybean Root Nodules (*) , 1995, The Journal of Biological Chemistry.

[48]  D. Roos,et al.  In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasma gondii , 1995, Antimicrobial agents and chemotherapy.

[49]  F. Ayala,et al.  Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Schwartzbach,et al.  The Polyprotein Precursor to the Euglena Light-harvesting Chlorophyll a/b-binding Protein Is Transported to the Golgi Apparatus Prior to Chloroplast Import and Polyprotein Processing (*) , 1995, The Journal of Biological Chemistry.

[51]  M. Hamada,et al.  Novel antibiotics, amythiamicins. IV. A mutation in the elongation factor Tu gene in a resistant mutant of B. subtilis. , 1995, The Journal of antibiotics.

[52]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[53]  L. Bosch,et al.  The structural and functional basis for the kirromycin resistance of mutant EF‐Tu species in Escherichia coli. , 1994, The EMBO journal.

[54]  D. Hughes,et al.  Mutations to kirromycin resistance occur in the interface of domains I and III of EF‐Tu·GTP , 1994, FEBS letters.

[55]  M. Gardner,et al.  Phylogenetic analysis of the rpoB gene from the plastid-like DNA of Plasmodium falciparum. , 1994, Molecular and biochemical parasitology.

[56]  R. Wilson,et al.  Antimalarial effects of rifampin in Plasmodium vivax malaria , 1994, Antimicrobial Agents and Chemotherapy.

[57]  Kevin E. Hicks,et al.  Molecular characterisation of the enolase gene from the human malaria parasite Plasmodium falciparum. Evidence for ancestry within a photosynthetic lineage. , 1994, European journal of biochemistry.

[58]  S. Douthwaite,et al.  The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A. , 1994, Nucleic acids research.

[59]  R. Wilson,et al.  Malaria and other Apicomplexans: the "plant" connection. , 1994, Infectious agents and disease.

[60]  J. Nyborg,et al.  The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. , 1993, Structure.

[61]  R. Hilgenfeld,et al.  Crystal structure of active elongation factor Tu reveals major domain rearrangements , 1993, Nature.

[62]  M. Reith,et al.  A High-Resolution Gene Map of the Chloroplast Genome of the Red Alga Porphyra purpurea. , 1993, The Plant cell.

[63]  J. Palmer,et al.  Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[64]  K. Zerfass,et al.  The leaky UGA termination codon of tobacco rattle virus RNA is suppressed by tobacco chloroplast and cytoplasmic tRNAs(Trp) with CmCA anticodon. , 1992, The EMBO journal.

[65]  G. Padmanaban,et al.  de novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. , 1992, Biochemical and biophysical research communications.

[66]  Y. Iwamura,et al.  Heterogeneity of host-related DNA sequences in schistosomes. , 1992, Parasitology today.

[67]  M. Gardner,et al.  Homologies between the contiguous and fragmented rRNAs of the two Plasmodium falciparum extrachromosomal DNAs are limited to core sequences. , 1992, Nucleic acids research.

[68]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[69]  M. Gardner,et al.  Organisation and expression of small subunit ribosomal RNA genes encoded by a 35-kilobase circular DNA in Plasmodium falciparum. , 1991, Molecular and biochemical parasitology.

[70]  D. Spencer,et al.  Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes , 1991, Nature.

[71]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[72]  T. McCutchan,et al.  Primary sequences of two small subunit ribosomal RNA genes from Plasmodium falciparum. , 1988, Molecular and biochemical parasitology.

[73]  I. Gluzman,et al.  Clindamycin activity against chloroquine-resistant Plasmodium falciparum. , 1984, The Journal of infectious diseases.

[74]  P. Borst,et al.  DNA circles with cruciforms from Isospora (Toxoplasma) gondii. , 1984, Biochimica et biophysica acta.

[75]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[76]  S. P. Gibbs THE CHLOROPLASTS OF SOME ALGAL GROUPS MAY HAVE EVOLVED FROM ENDOSYMBIOTIC EUKARYOTIC ALGAE , 1981, Annals of the New York Academy of Sciences.

[77]  H. McDaniel,et al.  Purification and Characterization of Phosphoenolpyruvate Carboxylase from Plasmodium berghei , 1972, Journal of bacteriology.

[78]  D. Soldati,et al.  The Apicoplast as a Potential Therapeutic Target in Toxoplasma and Other Apicomplexan Parasites , 1999 .

[79]  P. J. Stephens,et al.  Eimeria tenella : two species of extrachromosomal DNA revealed by pulsed-field gel electrophoresis , 1998, Parasitology Research.

[80]  B. Mericle,et al.  Identification of additional rRNA fragments encoded by the Plasmodium falciparum 6 kb element. , 1997, Nucleic acids research.

[81]  M. Gething Guidebook to the molecular chaperones and protein-folding catalysts , 1997 .

[82]  C. Wilson,et al.  Characterization of the delta-aminolevulinate synthase gene homologue in P. falciparum. , 1996, Molecular and biochemical parasitology.

[83]  G. McFadden,et al.  Something borrowed, something green: lateral transfer of chloroplasts by secondary endosymbiosis. , 1995, Trends in ecology & evolution.

[84]  G J Barton,et al.  ALSCRIPT: a tool to format multiple sequence alignments. , 1993, Protein engineering.

[85]  G. Kelly,et al.  The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants , 1983 .