Highly sensitive and selective xylene sensor based on p-p heterojunctions composites derived from off-stoichiometric cobalt tungstate

[1]  Yanchao Wang,et al.  Unexpected and enhanced electrostatic adsorption capacity of oxygen vacancy-rich cobalt-doped In2O3 for high-sensitive MEMS toluene sensor , 2021 .

[2]  Minghui Yang,et al.  Construction of Co3O4/CoWO4 core-shell urchin-like microspheres through ion-exchange method for high-performance acetone gas sensing performance , 2020 .

[3]  Jong‐Heun Lee,et al.  Dual-mode gas sensor for ultrasensitive and highly selective detection of xylene and toluene using Nb-doped NiO hollow spheres , 2019 .

[4]  C. Huang,et al.  Pt-Cr2O3-WO3 composite nanofibers as gas sensors for ultra-high sensitive and selective xylene detection , 2019 .

[5]  Yang Xu,et al.  Oxygen vacancies dominated CuO@ZnFe2O4 yolk-shell microspheres for robust and selective detection of xylene , 2019, Sensors and Actuators B: Chemical.

[6]  G. Lu,et al.  Highly selective and sensitive xylene gas sensor fabricated from NiO/NiCr2O4 p-p nanoparticles , 2019, Sensors and Actuators B: Chemical.

[7]  Minghui Yang,et al.  Hierarchical Co3O4@NiMoO4 core-shell nanowires for chemiresistive sensing of xylene vapor , 2019, Microchimica Acta.

[8]  G. Lu,et al.  Realizing the Control of Electronic Energy Level Structure and Gas-Sensing Selectivity over Heteroatom-Doped In2O3 Spheres with an Inverse Opal Microstructure. , 2019, ACS applied materials & interfaces.

[9]  G. Lu,et al.  3D inverse opal nanostructured multilayer films of two-component heterostructure composites: A new-generation synthetic route and potential application as high-performance acetone detector , 2018, Sensors and Actuators B: Chemical.

[10]  Sung Hyun Park,et al.  Hollow spheres of CoCr2O4–Cr2O3 mixed oxides with nanoscale heterojunctions for exclusive detection of indoor xylene , 2018 .

[11]  Ke-wei Xu,et al.  Oxygen Vacancy Enhanced Gas-Sensing Performance of CeO2/Graphene Heterostructure at Room Temperature. , 2018, Analytical chemistry.

[12]  M. Gao,et al.  Porous Co3O4/SnO2 quantum dot (QD) heterostructures with abundant oxygen vacancies and Co2+ ions for highly efficient gas sensing and oxygen evolution reaction. , 2018, Nanoscale.

[13]  G. Lu,et al.  Room temperature NO 2 gas sensor based on porous Co 3 O 4 slices/reduced graphene oxide hybrid , 2018, Sensors and Actuators B: Chemical.

[14]  G. Lu,et al.  Self-Assembly Template Driven 3D Inverse Opal Microspheres Functionalized with Catalyst Nanoparticles Enabling a Highly Efficient Chemical Sensing Platform. , 2018, ACS applied materials & interfaces.

[15]  Ho Won Jang,et al.  p-p Heterojunction of Nickel Oxide-Decorated Cobalt Oxide Nanorods for Enhanced Sensitivity and Selectivity toward Volatile Organic Compounds. , 2018, ACS applied materials & interfaces.

[16]  Jong-Heun Lee,et al.  NiO/NiWO4 Composite Yolk-Shell Spheres with Nanoscale NiO Outer Layer for Ultrasensitive and Selective Detection of Subppm-level p-Xylene. , 2017, ACS applied materials & interfaces.

[17]  Peng Sun,et al.  Hierarchical Assembly of α-Fe2O3 Nanorods on Multiwall Carbon Nanotubes as a High-Performance Sensing Material for Gas Sensors. , 2017, ACS applied materials & interfaces.

[18]  P. Fu,et al.  Hierarchical Fe2O3/Bi2WO6 nanoplates with enhanced xylene sensing performance , 2017, Journal of Materials Science: Materials in Electronics.

[19]  Y. Kang,et al.  Ultra-selective detection of sub-ppm-level benzene using Pd–SnO2 yolk–shell micro-reactors with a catalytic Co3O4 overlayer for monitoring air quality , 2017 .

[20]  X. Liu,et al.  Combustion synthesized hierarchically porous WO3 for selective acetone sensing , 2016 .

[21]  Kai Sun,et al.  High precision NH3 sensing using network nano-sheet Co3O4 arrays based sensor at room temperature , 2016 .

[22]  Qiang Ma,et al.  Ag Nanoparticle-Sensitized WO3 Hollow Nanosphere for Localized Surface Plasmon Enhanced Gas Sensors. , 2016, ACS applied materials & interfaces.

[23]  Jong‐Heun Lee,et al.  Co3O4-SnO2 Hollow Heteronanostructures: Facile Control of Gas Selectivity by Compositional Tuning of Sensing Materials via Galvanic Replacement. , 2016, ACS applied materials & interfaces.

[24]  Yanhong Lin,et al.  High-performance formaldehyde gas-sensors based on three dimensional center-hollow ZnO. , 2015, Physical chemistry chemical physics : PCCP.

[25]  Wenyao Li,et al.  One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes , 2015 .

[26]  Jianfeng Shen,et al.  Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors , 2014 .

[27]  Nak-Jin Choi,et al.  A ppb-level formaldehyde gas sensor based on CuO nanocubes prepared using a polyol process , 2014 .

[28]  Prabhakar Rai,et al.  Cr-doped Co3O4 nanorods as chemiresistor for ultraselective monitoring of methyl benzene , 2014 .

[29]  S. Batterman,et al.  Levels and sources of volatile organic compounds in homes of children with asthma. , 2014, Indoor air.

[30]  Wei Li,et al.  Preparation and Xylene‐Sensing Properties of Co3O4 Nanofibers , 2014 .

[31]  J. H. Lee,et al.  Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview , 2014 .

[32]  Adisorn Tuantranont,et al.  Ultra-rapid VOCs sensors based on sparked-In2O3 sensing films , 2014 .

[33]  S. R. Silva,et al.  From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. , 2014, Nanoscale.

[34]  Jiaqiang Xu,et al.  Selective BTEX sensor based on a SnO2/V2O5 composite , 2013 .

[35]  Ho Won Jang,et al.  Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. , 2013, Nanoscale.

[36]  K. Hara,et al.  Xylene sensor using double-layered thin film and Ni-deposited porous alumina , 2013 .

[37]  Hossam Haick,et al.  Volatile organic compounds of lung cancer and possible biochemical pathways. , 2012, Chemical reviews.

[38]  Nicolae Barsan,et al.  The Role of NiO Doping in Reducing the Impact of Humidity on the Performance of SnO2‐Based Gas Sensors: Synthesis Strategies, and Phenomenological and Spectroscopic Studies , 2011 .

[39]  G. Shen,et al.  Porous WO3 with enhanced photocatalytic and selective gas sensing properties , 2011 .

[40]  Li Liu,et al.  Synthesis, Characterization, and m-Xylene Sensing Properties of Co-ZnO Composite Nanofibers , 2011 .

[41]  R. G. Pavelko,et al.  Influence of oxygen backgrounds on hydrogen sensing with SnO2 nanomaterials , 2011 .

[42]  Udo Weimar,et al.  Influence of humidity on CO sensing with p-type CuO thick film gas sensors , 2011 .

[43]  S. El‐Safty,et al.  Meso- and Macroporous Co3O4 Nanorods for Effective VOC Gas Sensors , 2011 .

[44]  A. Salker,et al.  Mechanistic approach of CO oxidation over Cu1−xCoxWO4 system , 2009 .

[45]  D. Barreca,et al.  Sol-Gel and CVD Co3O4 Thin Films Characterized by XPS , 2001 .

[46]  Sergio Daolio,et al.  Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(II) Precursor by Chemical Vapor Deposition , 2001 .

[47]  Bin Wang,et al.  Xylene gas sensor based on Au-loaded WO3·H2O nanocubes with enhanced sensing performance , 2017 .

[48]  K. Kan,et al.  Ultrafast NH3 Sensing Properties of WO3@CoWO4 Heterojunction Nanofibres at Room Temperature , 2017 .

[49]  W. Reimringer,et al.  Selective Detection of Hazardous Indoor VOCs Using Metal Oxide Gas Sensors , 2014 .

[50]  D. Gonbeau,et al.  Systematic XPS studies of metal oxides, hydroxides and peroxides , 2000 .