Spin–orbit effects on magnetically induced current densities in the M5− ( M = N,P,As,Sb,Bi,Mc ) clusters

This study reports the spin–orbit effects on the aromaticity of the N5− , P5− , As5− , Sb5− , Bi5− , and Mc5− anionic clusters via the magnetically induced current‐density method. All‐electron density functional theory (DFT) calculations were carried out using the four‐component Dirac‐Coulomb (DC) hamiltonian, including scalar and spin–orbit relativistic effects. The magnetic index of aromaticity was calculated by numerical integration over the current flow between two atoms in the pentagonal ring. These values were compared to the spin‐free values (spin–orbit coupling switched off), in order to assess the spin–orbit effect on aromaticity. It was found that in the heavy anions, Bi5− and Mc5− , there is a significant influence of the spin–orbit coupling. © 2018 Wiley Periodicals, Inc.

[1]  P. Fowler,et al.  Current-density maps as probes of aromaticity: global and Clar pi ring currents in totally resonant polycyclic aromatic hydrocarbons. , 2007, Faraday discussions.

[2]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the light elements H–Ar , 2016, Theoretical Chemistry Accounts.

[3]  Miquel Solà,et al.  A dissected ring current model for assessing magnetic aromaticity: A general approach for both organic and inorganic rings , 2011, J. Comput. Chem..

[4]  Lai‐Sheng Wang,et al.  Aromaticity and antiaromaticity in transition-metal systems. , 2008, Physical chemistry chemical physics : PCCP.

[5]  R. Kaschner,et al.  Photoelectron investigations and density functional calculations of anionic Sbn− and Bin− clusters , 1996 .

[6]  K. Dyall Relativistic Quadruple-Zeta and Revised Triple-Zeta and Double-Zeta Basis Sets for the 4p, 5p, and 6p Elements , 2006 .

[7]  Cunyuan Zhao,et al.  Structure and aromaticity of Sb 5 - and Sb 5M (M = Li, Na, and K) clusters , 2007 .

[8]  D. Sundholm,et al.  The gauge including magnetically induced current method. , 2011, Physical chemistry chemical physics : PCCP.

[9]  Linus Pauling,et al.  The Diamagnetic Anisotropy of Aromatic Molecules , 1936 .

[10]  J. Gauss,et al.  Calculation of spin-current densities using gauge-including atomic orbitals , 2004 .

[11]  R. Zanasi,et al.  The making of ring currents. , 2016, Physical chemistry chemical physics : PCCP.

[12]  Danail Bonchev,et al.  Predicting the properties of the 113-120 transactinide elements , 1981 .

[13]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[14]  M. Gordon,et al.  Enthalpies of formation of gas-phase N3, N3-, N5+, and N5- from Ab initio molecular orbital theory, stability predictions for N5(+)N3(-) and N5(+)N5(-), and experimental evidence for the instability of N5(+)N3(-). , 2004, Journal of the American Chemical Society.

[15]  P. Pyykkö Relativistic effects in chemistry: more common than you thought. , 2012, Annual review of physical chemistry.

[16]  G. Schreckenbach,et al.  NMR Shielding Calculations across the Periodic Table: Diamagnetic Uranium Compounds. 1. Methods and Issues , 2000 .

[17]  R. Mallion,et al.  Aromaticity and ring currents. , 2001, Chemical reviews.

[18]  Ashwani Vij,et al.  Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5-**. , 2002, Angewandte Chemie.

[19]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[20]  Paolo Lazzeretti Assessment of aromaticity via molecular response properties , 2004 .

[21]  A. Boldyrev,et al.  All-Transition Metal Aromaticity and Antiaromaticity , 2010 .

[22]  Lai‐Sheng Wang,et al.  Beyond organic chemistry: aromaticity in atomic clusters. , 2016, Physical chemistry chemical physics : PCCP.

[23]  Mikael P. Johansson,et al.  Sphere currents of Buckminsterfullerene. , 2005, Angewandte Chemie.

[24]  L. Mammino,et al.  An investigation of aromaticity in hydroxybenzenes based on the study of magnetically induced current density , 2017 .

[25]  L. Alvarez‐Thon,et al.  Spin-orbit effects on magnetically induced current densities in the M42- (M=B,Al,Ga,In,Tl) clusters , 2017 .

[26]  O. Scherer Complexes with Substituent‐free Acyclic and Cyclic Phosphorus, Arsenic, Antimony, and Bismuth Ligands , 1990 .

[27]  Trond Saue,et al.  Relativistic Hamiltonians for chemistry: a primer. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  P. Pyykkö The physics behind chemistry and the periodic table. , 2012, Chemical reviews.

[29]  Pekka Pyykkö,et al.  Relativity and the periodic system of elements , 1979 .

[30]  K. Lonsdale Magnetic Anisotropy and Electronic Structure of Aromatic Molecules , 1937 .

[31]  P. Fowler,et al.  Ring currents as probes of the aromaticity of inorganic monocycles : P5-, As5-, S2N2, S3N3-, S4N3+, S4N42+, S5N5+, S42+ and Se42+. , 2004, Chemistry.

[32]  Justyna Dominikowska,et al.  Aromaticity from the viewpoint of molecular geometry: application to planar systems. , 2014, Chemical reviews.

[33]  Cunyuan Zhao,et al.  Structure and aromaticity of Bi5-, Bi5M (M = Li, Na, K) and Bi5M+ (M = Be, Mg, Ca) clusters , 2008 .

[34]  W. Tiznado,et al.  Revisiting Aromaticity and Chemical Bonding of Fluorinated Benzene Derivatives , 2015, ChemistryOpen.

[35]  Werner Kutzelnigg,et al.  Quasirelativistic theory equivalent to fully relativistic theory. , 2005, The Journal of chemical physics.

[36]  P. Lazzeretti,et al.  Theoretical studies of the benzene molecule: Magnetic susceptibility and nuclear shielding constants , 1981 .

[37]  Renana Gershoni‐Poranne,et al.  Magnetic criteria of aromaticity. , 2015, Chemical Society reviews.

[38]  Daoling Peng,et al.  Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory. , 2006, The Journal of chemical physics.

[39]  Chengguo Sun,et al.  Synthesis and characterization of the pentazolate anion cyclo-N5ˉ in (N5)6(H3O)3(NH4)4Cl , 2017, Science.

[40]  R. Ramírez-Tagle,et al.  Relativistic effects on the aromaticity of the halogenated benzenes: C6X6, X = H, F, Cl, Br, I, At. , 2016, Physical chemistry chemical physics : PCCP.

[41]  Lai‐Sheng Wang,et al.  Probing the Electronic Structure and Aromaticity of Pentapnictogen Cluster Anions Pn5- (Pn = P, As, Sb, and Bi) Using Photoelectron Spectroscopy and ab Initio Calculations , 2002 .

[42]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[43]  Liliana Mammino,et al.  Information on Gas‐Phase Diatomic Molecules from Magnetically Induced Current Densities , 2018, J. Comput. Chem..

[44]  G. Seifert,et al.  The induced magnetic field in cyclic molecules. , 2004, Chemistry.

[45]  P. Fowler,et al.  On the orbital analysis of magnetic propertiesPresented at the ESF Exploratory Workshop: New Perspectives on Aromaticity, Exeter, UK, July 5?9, 2003. , 2004 .

[46]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[47]  Radovan Bast,et al.  4-Component relativistic calculation of the magnetically induced current density in the group 15 heteroaromatic compounds , 2009 .

[48]  Dage Sundholm,et al.  Calculations of magnetically induced current densities: theory and applications , 2016 .

[49]  Trond Saue,et al.  An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. , 2007, The Journal of chemical physics.

[50]  Zahra Badri,et al.  Unification of ground-state aromaticity criteria - structure, electron delocalization, and energy - in light of the quantum chemical topology. , 2016, Physical chemistry chemical physics : PCCP.

[51]  K. Dyall Relativistic and nonrelativistic finite nucleus optimized triple-zeta basis sets for the 4p, 5p and 6p elements , 1998 .

[52]  Radovan Bast,et al.  4-Component relativistic magnetically induced current density using London atomic orbitals. , 2011, Physical chemistry chemical physics : PCCP.

[53]  M. Repiský,et al.  How does relativity affect magnetically induced currents? , 2015, Chemical communications.

[54]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[55]  K. Ruud,et al.  All-Metal Aromaticity: Revisiting the Ring Current Model among Transition Metal Clusters. , 2013, Journal of chemical theory and computation.

[56]  K. Dyall An exact separation of the spin‐free and spin‐dependent terms of the Dirac–Coulomb–Breit Hamiltonian , 1994 .

[57]  Calculation of 19F NMR chemical shifts in uranium complexes using density functional theory and pseudopotentials , 2005 .

[58]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 7p elements, with atomic and molecular applications , 2012, Theoretical Chemistry Accounts.

[59]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[60]  A Kokalj,et al.  XCrySDen--a new program for displaying crystalline structures and electron densities. , 1999, Journal of molecular graphics & modelling.

[61]  M. Randic Aromaticity of polycyclic conjugated hydrocarbons. , 2003, Chemical reviews.

[62]  P. Fowler,et al.  Ipsocentric ring currents in density functional theory , 2007 .

[63]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[64]  Alexander I Boldyrev,et al.  All-metal aromaticity and antiaromaticity. , 2005, Chemical reviews.

[65]  R. Ramírez-Tagle,et al.  Aspects of spin-orbit effects in compounds containing heavy elements , 2014, Journal of Mathematical Chemistry.

[66]  Lucas Visscher,et al.  Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions , 1997 .

[67]  Lai‐Sheng Wang,et al.  Observation of all-metal aromatic molecules. , 2001, Science.

[68]  Patrick W. Fowler,et al.  Patterns of Ring Currents in Conjugated Molecules: A Few-Electron Model Based on Orbital Contributions , 2001 .

[69]  P. Lazzeretti,et al.  Inconsistency of the ring-current model for the cyclopropenyl cation , 1981 .