Toward In Silico Design of Highly Tunable Liquid Crystal Elastomers

[1]  K. Long,et al.  3D Printing of Liquid Crystal Elastomer Foams for Enhanced Energy Dissipation Under Mechanical Insult. , 2020, ACS applied materials & interfaces.

[2]  Jacob R. Gissinger,et al.  REACTER: A Heuristic Method for Reactive Molecular Dynamics , 2020 .

[3]  Qi Ge,et al.  Liquid‐Crystal‐Elastomer‐Based Dissipative Structures by Digital Light Processing 3D Printing , 2020, Advanced materials.

[4]  Ethan I. L. Jull,et al.  Isotropic Liquid Crystal Elastomers as Exceptional Photoelastic Strain Sensors , 2020, Macromolecules.

[5]  Z. Xia,et al.  Effects of network structure on the mechanical and thermal responses of liquid crystal elastomers , 2020, Multifunctional Materials.

[6]  Yen Wei,et al.  Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots , 2020, Science Advances.

[7]  H. Gleeson,et al.  Mechanical deformations of a liquid crystal elastomer at director angles between 0° and 90°: Deducing an empirical model encompassing anisotropic nonlinearity , 2019, Journal of Polymer Science Part B: Polymer Physics.

[8]  G. Wnek,et al.  Light Control with Liquid Crystalline Elastomers , 2019, Advanced Optical Materials.

[9]  Denis Andrienko,et al.  Introduction to liquid crystals , 2018, Journal of Molecular Liquids.

[10]  Ravi R. Patel,et al.  Liquid crystal elastomers: an introduction and review of emerging technologies , 2018 .

[11]  Jacob R. Gissinger,et al.  Chemical Reactions in Classical Molecular Dynamics. , 2017, Polymer.

[12]  N. Clark,et al.  Thiol‐acrylate main‐chain liquid‐crystalline elastomers with tunable thermomechanical properties and actuation strain , 2017 .

[13]  Pradip B. Sarawade,et al.  Study of the optical, thermal, and mechanical properties of nematic liquid crystal elastomers , 2016 .

[14]  Thomas J Lane,et al.  MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.

[15]  Soo-young Park,et al.  Shape-responsive actuator from a single layer of a liquid-crystal polymer. , 2014, ACS applied materials & interfaces.

[16]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[17]  H. Finkelmann,et al.  Thermal and Mechanical Properties of New Main-Chain Liquid-Crystalline Elastomers , 2009 .

[18]  Ken Gall,et al.  Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system , 2008 .

[19]  Ken Gall,et al.  Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape-memory polymer networks , 2008 .

[20]  H. Gleeson,et al.  Using the full Raman depolarisation in the determination of the order parameters in liquid crystal systems , 2007, The European physical journal. E, Soft matter.

[21]  J. E. Mark,et al.  Physical properties of polymers handbook , 2007 .

[22]  Patrick Keller,et al.  Artificial muscles based on liquid crystal elastomers , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  C. Spillmann,et al.  Tuning the physical properties of a nematic liquid crystal elastomer actuator , 2006 .

[24]  Benoit Ladoux,et al.  Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography. , 2006, Journal of the American Chemical Society.

[25]  Bao‐yan Zhang,et al.  Phase behavior of liquid crystalline elastomers based on a tri-vinyl mesogenic cross-linker , 2005 .

[26]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[27]  K. Urayama,et al.  Damping Elastomer Based on Model Irregular Networks of End-Linked Poly(Dimethylsiloxane) , 2004 .

[28]  E. Terentjev,et al.  Dynamic soft elasticity in monodomain nematic elastomers , 2002, The European physical journal. E, Soft matter.

[29]  E. Zhou,et al.  Synthesis and characterization of network liquid crystal elastomers and thermosets , 2002 .

[30]  George I Makhatadze,et al.  Differential Scanning Calorimetry , 2009 .

[31]  Banahalli R. Ratna,et al.  Liquid Crystal Elastomers with Mechanical Properties of a Muscle , 2001 .

[32]  S. Clarke,et al.  Soft elasticity and mechanical damping in liquid crystalline elastomers , 2001 .

[33]  H. Finkelmann,et al.  The elastic anisotropy of nematic elastomers , 2001 .

[34]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[35]  P. J. Achorn,et al.  Comparison of thermal techniques for glass transition measurements of polystyrene and cross‐linked acrylic polyurethane films , 1994 .

[36]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[37]  JULIAN F. Johnson,et al.  Phase Diagrams of Binary Nematic Mesophase Systems , 1973 .

[38]  Robert Simha,et al.  On a General Relation Involving the Glass Temperature and Coefficients of Expansion of Polymers , 1962 .