A mechanism explaining the metamorphoses of KAM islands in nonhyperbolic chaotic scattering

[1]  R. Barrio,et al.  Distribution of stable islands within chaotic areas in the non-hyperbolic and hyperbolic regimes in the Hénon–Heiles system , 2020, Nonlinear Dynamics.

[2]  E. Zotos,et al.  Measuring the transition between nonhyperbolic and hyperbolic regimes in open Hamiltonian systems , 2019, Nonlinear Dynamics.

[3]  Charles F. F. Karney Long-Time Correlations in the Stochastic Regime , 1983, Hamiltonian Dynamical Systems.

[4]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[5]  Miguel A F Sanjuán,et al.  New developments in classical chaotic scattering , 2013, Reports on progress in physics. Physical Society.

[6]  Ying-Cheng Lai,et al.  Transient Chaos: Complex Dynamics on Finite Time Scales , 2011 .

[7]  M A F Sanjuán,et al.  Fractal structures in nonlinear plasma physics , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  G. Contopoulos,et al.  Stickiness effects in chaos , 2010 .

[9]  Roberto Barrio,et al.  Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems , 2009 .

[10]  H. Kantz,et al.  Stickiness in Hamiltonian systems: from sharply divided to hierarchical phase space. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[12]  George Contopoulos,et al.  Order and Chaos in Dynamical Astronomy , 2002 .

[13]  R. Dvorak,et al.  Destruction of islands of stability , 1999 .

[14]  R. Dvorak,et al.  Stickiness and cantori , 1997 .

[15]  Ketzmerick,et al.  Fractal conductance fluctuations in generic chaotic cavities. , 1995, Physical review. B, Condensed matter.

[16]  Solomon,et al.  Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. , 1993, Physical review letters.

[17]  Mao,et al.  Hamiltonian bifurcation theory of closed orbits in the diamagnetic Kepler problem. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[18]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[19]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[20]  G. Contopoulos Orbits in Highly Perturbed Dynamical Systems. II. Stability of Periodic Orbits , 1970 .

[21]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[22]  George D. Birkhoff,et al.  Proof of Poincaré’s geometric theorem , 1913 .

[23]  Henri Poincaré,et al.  Sur un théorème de géométrie , 1912 .