Igneous Rock Associations in Canada 3. Large Igneous Provinces (LIPs) in Canada and Adjacent Regions: 3 Ga to Present

Earth history is punctuated by numerous periods during which large volumes of mafic magma were emplaced. Such magmas not generated by a 'normal' spreading ridge or by subduction are termed Large Igneous Provinces (LIPs), and consist of continental flood basalts, volcanic rifted margins, oceanic plateaus, ocean basin flood basalts, submarine ridges, and seamount chains. Associated felsic rocks may also be present. LIPs of Mesozoic and Cenozoic age are typically the best preserved. Those of Paleozoic and Proterozoic age are usually more deeply eroded, and consist of flood basalt remnants and a deep-level plumbing system (of giant dyke swarms, sill provinces and layered intrusions). In the Archean the most promising LIP candidates are greenstone belts containing komatiites. Many LIPs have been linked to regional-scale uplift, continental rifting and breakup, and climatic crises. They can be used as precisely dated time markers in the stratigraphic record, and are key targets for Ni-Cu-PGE exploration. LIPs have also become a focus in the debate on the existence and nature of mantle plumes. Canada has a rich record of LIPs. At least 80 candidates are recognized in Canada and adjacent regions, with ages ranging from 3100 to 17 Ma. We review proposed links between the LIP record of Canada and mantle plumes, continental breakup, regional uplift, and ore deposits. However, given that many mafic units in Canada remain poorly characterized, a concerted geochronology campaign with integrated paleomagnetism and geochemistry would be invaluable in expanding the application of the Canadian LIP record to solving major geological problems. RESUME L'histoire de la Terre est ponctuee de nombreuses periodes de mise en place de forts volumes de magma mafiques. De tels magmas qui ne sont pas issus de zones d'expansion « normale » ou de subduction sont appeles Grandes provinces ignees (GPI), et celles-ci sont constituees de basaltes d'epanchements continentaux, de marges de fosse volcaniques, de plateaux oceaniques, d'epanchements de basaltes de bassins oceaniques, de cretes sous-marines, et de chaines de monts sous-marines. Peuvent egalement y etre associees des suites de roches felsiques. Generalement, les GPI du Mesozoique et du Cenozoique sont les mieux preservees. Celles du Proterozoique et du Paleozoique sont generalement plus fortement erodees et sont constituees de vestiges de basaltes d'epanchement et des reseaux de conduits d'origine (reseaux geants de dykes, provinces de filons-couches et d'intrusifs stratifiees). Dans l'Archeen, les meilleurs candidats sont representes par les bandes de roches vertes a komatiites. De nombreuses GPI ont ete associees a des episodes de soulevement regionaux, de derives ou de fragmentations continentales, ainsi qu'a des crises climatiques. Elles peuvent servir de marqueurs temporels stratigraphiques et sont des cibles de premiere importance dans l'exploration de gisements de Cu-Ni-EGP. Les GPI sont aussi devenues des arguments tres consideres dans le debat sur l'existence et la nature des panaches mantelliques. Le Canada possede de riches archives de GPI, et au moins 80 candidatures ont ete isolees sur le territoire canadien et dans les regions adjacentes, leur âge delimitant une fourchette allant de 3 100 Ma a 17 Ma. Nous passons en revue les liens proposes entre la suite des GDI canadiennes d'une part, et celle des panaches mantelliques, des fragmentations continentales, des soulevements regionaux, et des gisements mineraux, d'autre part. Toutefois, vu le pietre etat de caracterisation des unites mafiques au Canada, une campagne de caracterisation geochronologique, paleomagnetique et geochimique serait d'une valeur inestimable pour favoriser l'utilisation des GDI canadiennes pour nous aider a solutionner de grands problemes geologiques.

[1]  A. Kerr,et al.  Mantle plumes: physical processes, chemical signatures, biological effects , 2005 .

[2]  W. Bleeker Taking the Pulse of Planet Earth: A Proposal for a New Multi-disciplinary Flagship Project in Canadian Solid Earth Sciences , 2004 .

[3]  P. Theyer Magmatic Platinum Group Element Environments in Canada: Present and Future Exploration Target Areas , 2004 .

[4]  M. Hamilton,et al.  U-Pb Age and Preliminary Paleomagnetism of a Melville Bugt Diabase Dyke, West Greenland, and Implications for Mid-Proterozoic Laurentia-Baltica Reconstructions , 2004 .

[5]  M. Hamilton,et al.  Early Proterozoic geomagnetic field in western Laurentia: implications for paleolatitudes, local rotations and stratigraphy , 2004 .

[6]  W. Bleeker,et al.  PanLITHOPROBE Workshop IV: Intra-Orogen Correlations and Comparative Orogenic Anatomy , 2004 .

[7]  D. Davis,et al.  Paleomagnetism and U–Pb geochronology of the 2.17 Ga Biscotasing dyke swarm, Ontario, Canada: evidence for vertical-axis crustal rotation across the Kapuskasing Zone , 2004 .

[8]  M. Hamilton,et al.  Tectonic significance of a Llanvirn age for the Dunn Point volcanic rocks, Avalon terrane, Nova Scotia, Canada: implications for the evolution of the Iapetus and Rheic Oceans , 2004 .

[9]  R. Creaser,et al.  Sm–Nd fluorite dating of Proterozoic low-sulfidation epithermal Au–Ag deposits and U–Pb zircon dating of host rocks at Mallery Lake, Nunavut, Canada , 2003 .

[10]  S. Harlan,et al.  Gunbarrel mafic magmatic event: A key 780 Ma time marker for Rodinia plate reconstructions , 2003 .

[11]  R. Ernst,et al.  RECOGNIZING MANTLE PLUMES IN THE GEOLOGICAL RECORD , 2003 .

[12]  D. Francis,et al.  Enriched mantle components in Proterozoic continental-flood basalts of the Cape Smith foldbelt, northern Québec , 2003 .

[13]  G. Foulger,et al.  Is "Hotspot" Volcanism a Consequence of Plate Tectonics? , 2003, Science.

[14]  B. Upton,et al.  Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting , 2003 .

[15]  S. Johnston,et al.  Reconstructing the ancestral Yellowstone plume from accreted seamounts and its relationship to flat-slab subduction , 2003 .

[16]  C. Maurice,et al.  Constraints on early Archean crustal extraction and tholeiitic-komatiitic volcanism in greenstone belts of the Northern Superior Province , 2003 .

[17]  B. Cousens,et al.  Proterozoic (1.85–1.75 Ga) igneous suites of the Western Churchill Province: granitoid and ultrapotassic magmatism in a reworked Archean hinterland , 2002 .

[18]  Jean Besse,et al.  Three distinct types of hotspots in the Earth's mantle , 2002 .

[19]  O. Catuneanu,et al.  Late Archaean superplume events: a Kaapvaal–Pilbara perspective , 2002 .

[20]  R. Ernst,et al.  Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces , 2002 .

[21]  H. Stein,et al.  Baltica-Laurentia link during the Mesoproterozoic: 1.27 Ga development of continental basins in the Sveconorwegian Orogen, southern Norway , 2002 .

[22]  L. Heaman,et al.  Feasibility of chemical U-Th-total Pb baddeleyite dating by electron microprobe , 2002 .

[23]  D. Davis,et al.  The age of the Gunflint Formation, Ontario, Canada: single zircon U-Pb age determinations from reworked volcanic ash , 2002 .

[24]  W. F. Cannon,et al.  Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region , 2002 .

[25]  P. Thurston,et al.  Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt , 2002 .

[26]  J. Ketchum,et al.  Evolution of the southern Abitibi greenstone belt based on U–Pb geochronology: autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation , 2002 .

[27]  C. Gower,et al.  A U–Pb geochronological review of the Proterozoic history of the eastern Grenville Province , 2002 .

[28]  J. Hall,et al.  The southeastern Churchill Province: synthesis of a Paleoproterozoic transpressional orogen , 2002 .

[29]  S. Kamo,et al.  Evolution of 3.1 and 3.0 Ga volcanic belts and a new thermotectonic model for the Hopedale Block, North Atlantic craton (Canada) , 2002 .

[30]  J. Owen,et al.  U–Pb geochronologic constraints on the crustal evolution of the Long Range Inlier, Newfoundland , 2002 .

[31]  D. Abbott,et al.  Implications of the Temporal Distribution of High‐Mg Magmas for Mantle Plume Volcanism through Time , 2002, The Journal of Geology.

[32]  J. Ketchum,et al.  Petrology, age, and tectonic setting of the White Rock Formation, Meguma terrane, Nova Scotia: evidence for Silurian continental rifting , 2002 .

[33]  J. Logan,et al.  U–Pb zircon age constraint for late Neoproterozoic rifting and initiation of the lower Paleozoic passive margin of western Laurentia , 2002 .

[34]  M. Leybourne,et al.  The Silurian(?) Passamaquoddy Bay mafic dyke swarm, New Brunswick: petrogenesis and tectonic implications , 2001 .

[35]  R. Creaser,et al.  Early Proterozoic magmatism in Yukon, Canada: constraints on the evolution of northwestern Laurentia , 2001 .

[36]  C. V. Staal,et al.  Taconian orogeny and the accretion of the Dashwoods block: A peri-Laurentian microcontinent in the Iapetus Ocean , 2001 .

[37]  J. Chiarenzelli,et al.  Enriched Archean lithospheric mantle beneath western Churchill Province tapped during Paleoproterozoic orogenesis , 2001 .

[38]  J. C. Green,et al.  The Mesoproterozoic Midcontinent Rift System, Lake Superior Region, USA , 2001 .

[39]  H. Lapierre,et al.  Imbricate architecture of the Upper Paleozoic to Jurassic oceanic Cache Creek Terrane, central British Columbia , 2001 .

[40]  H. Lapierre,et al.  The influence of mantle plume in the genesis of the Cache Creek oceanic igneous rocks: implications for the geodynamic evolution of the inner accreted terranes of the Canadian Cordillera , 2001 .

[41]  Peter A. Cawood,et al.  Opening Iapetus: Constraints from the Laurentian margin in Newfoundland , 2001 .

[42]  R. G. Anderson,et al.  The Cheslatta Lake suite: Miocene mafic, alkaline magmatism in central British Columbia , 2001 .

[43]  J. Ketchum,et al.  Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: evolution of a passive margin-foredeep sequence based on petrochemistry and U–Pb (TIMS and LAM-ICP-MS) geochronology , 2001 .

[44]  M. Hamilton,et al.  Integrated Paleomagnetism and U‐Pb Geochronology of Mafic Dikes of the Eastern Anabar Shield Region, Siberia: Implications for Mesoproterozoic Paleolatitude of Siberia and Comparison with Laurentia , 2000, The Journal of Geology.

[45]  L. Heaman,et al.  The paleomagnetic significance of new U-Pb age data from the Molson dyke swarm, Cauchon Lake area, Manitoba , 2000 .

[46]  J. Keppie 440 Ma igneous activity in the Meguma Terrane, Nova Scotia, Canada; part of the Appalachian overstep sequence? , 2000 .

[47]  B. Kjarsgaard,et al.  Timing of eastern North American kimberlite magmatism: continental extension of the Great Meteor hotspot track? , 2000 .

[48]  S. Elming,et al.  Comparing the drift of Laurentia and Baltica in the Proterozoic: the importance of key palaeomagnetic poles , 2000 .

[49]  D. Corrigan,et al.  Convergent margin on southeastern Laurentia during the Mesoproterozoic: tectonic implications , 2000 .

[50]  D. Corrigan,et al.  U-Pb constraints for the plutonic and tectonometamorphic evolution of Lake Melville terrane, Labrador and implications for basement reworking in the northeastern Grenville Province , 2000 .

[51]  N. Machado,et al.  Chronology of crustal growth and recycling in the Paleoproterozoic Amisk collage (Flin Flon Belt), Trans-Hudson Orogen, Canada , 1999 .

[52]  A. Bailes,et al.  Contrasting arc and MORB-like assemblages in the Paleoproterozoic Flin Flon Belt, Manitoba, and the role of intra-arc extension in localizing volcanic-hosted massive sulphide deposits , 1999 .

[53]  Haggerty,et al.  A diamond trilogy: superplumes, supercontinents, and supernovae , 1999, Science.

[54]  C. V. Staal,et al.  Middle to late Paleozoic Acadian orogeny in the northern Appalachians: A Laramide-style plume-modified orogeny? , 1999 .

[55]  P. Tapponnier,et al.  On causal links between flood basalts and continental breakup , 1999 .

[56]  A. J. Naldrett World-class Ni-Cu-PGE deposits: key factors in their genesis , 1999 .

[57]  S. Lucas,et al.  THE 2.00 GA PURTUNIQ OPHIOLITE, CAPE SMITH BELT, CANADA: MORB-LIKE CRUST INTRUDED BY OIB-LIKE MAGMATISM , 1999 .

[58]  Cottrell,et al.  Evidence for extreme climatic warmth from late cretaceous arctic vertebrates , 1998, Science.

[59]  K. Buchan,et al.  Palaeomagnetism of the ca. 440 Ma Cape St Mary's sills of the Avalon Peninsula of Newfoundland: implications for Iapetus Ocean closure , 1998 .

[60]  J. Mortensen,et al.  Paleomagnetism and U-Pb geochronology of diabase dyke swarms of Minto block, Superior Province, Quebec, Canada , 1998 .

[61]  D. Demaiffe,et al.  The 616 Ma Old Egersund Basaltic Dike Swarm, Sw Norway, and Late Neoproterozoic Opening of the Iapetus Ocean , 1998, The Journal of Geology.

[62]  Michael Denis Higgins,et al.  The Age of the Sept Iles Layered Mafic Intrusion, Canada: Implications For the Late Neoproterozoic/Cambrian History of Southeastern Canada , 1998, The Journal of Geology.

[63]  P. Thurston,et al.  The Red Lake greenstone belt, Superior Province: evidence of plume-related magmatism at 3 Ga and evidence of an older enriched source , 1998 .

[64]  G. Pe‐Piper,et al.  Geochemical evolution of Devonian-Carboniferous igneous rocks of the Magdalen basin, Eastern Canada: Pb- and Nd-isotope evidence for mantle and lower crustal sources , 1998 .

[65]  L. Heaman Global mafic magmatism at 2.45 Ga: Remnants of an ancient large igneous province? , 1997 .

[66]  D. Eaton,et al.  Winagami reflection sequence: Seismic evidence for postcollisional magmatism in the Proterozoic of western Canada , 1997 .

[67]  C. Hart,et al.  Yellowstone in Yukon: The Late Cretaceous Carmacks Group , 1996 .

[68]  J. G. McHone Constraints on the mantle plume model for Mesozoic alkaline intrusions in northeastern North America , 1996 .

[69]  W. Baragar,et al.  Longitudinal Petrochemical Variation in the Mackenzie Dyke Swarm, Northwestern Canadian Shield , 1996 .

[70]  M. Leybourne,et al.  Geochemistry, petrogenesis, and tectonic setting of lower Paleozoic alkalic and potassic volcanic rocks, Northern Canadian Cordilleran Miogeocline , 1995 .

[71]  D. Rankin,et al.  U-Pb ages of metarhyolites of the Catoctin and Mount Rogers formations, central and southern Appalachians: evidence for two pulses of Iapetan rifting , 1995 .

[72]  Don Francis,et al.  Proterozoic continental volcanism in the Belcher Islands: implications for the evolution of the Circum Ungava Fold Belt , 1994 .

[73]  J. Dostal,et al.  Late Silurian‐Early Devonian transpressional rift origin of the Quebec Reentrant, northern Appalachians: Constraints from geochemistry of volcanic rocks , 1994 .

[74]  O. Eldholm,et al.  Large igneous provinces: crustal structure, dimensions, and external consequences , 1994 .

[75]  R. Ernst,et al.  Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm , 1992, Nature.

[76]  David C. Jones,et al.  A Mantle Plume Initiation Model for the Wrangellia Flood Basalt and Other Oceanic Plateaus , 1991, Science.

[77]  E. Clark,et al.  Geochemical signature and seismic stratigraphic setting of Coppermine basalts drilled beneath the Anderson Plains in northwest Canada , 1991 .

[78]  R. W. Griffiths,et al.  Implications of mantle plume structure for the evolution of flood basalts , 1990 .

[79]  K. G. Cox The role of mantle plumes in the development of continental drainage patterns , 1989, Nature.

[80]  L. Heaman,et al.  Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening , 1989 .

[81]  F. Marillier,et al.  Crustal thickness under the Gulf of St. Lawrence, northern Appalachians, from gravity and deep seismic data , 1989 .

[82]  R. White,et al.  Magmatism at rift zones: The generation of volcanic continental margins and flood basalts , 1989 .

[83]  K. Osadetz,et al.  Stratigraphy and tectonic significance of Cretaceous volcanism in the Queen Elizabeth Islands, Canadian Arctic Archipelago , 1988 .

[84]  T. P. Fox,et al.  Geochemistry and petrogenesis of the early Proterozoic Hemlock volcanic rocks and the Kiernan sills, southern Lake Superior region , 1988 .

[85]  F. Walter The tectonic settings of continental mafic dyke swarms; failed arm and early passive margin , 1987 .

[86]  R. Parrish,et al.  Late Cretaceous bimodal magmatism,northern Ellesmere Island:isotopic age and origin , 1987 .

[87]  W. C. Gussow The Importance and Potential of Mafic Dyke Swarms in Studies of Geodynamic Processes , 1983 .

[88]  G. D. Jackson,et al.  Correlation of Major Aphebian Rock Units in the Northeastern Canadian Shield , 1972 .

[89]  R. Bell Geological Survey of Canada , 1885, Nature.

[90]  R. Ernst,et al.  Diabase dyke swarms and related units in Canada and adjacent regions , 2004 .

[91]  B. Ryan,et al.  THE MESOPROTEROZOIC NAIN PLUTONIC SUITE AND ITS COUNTRY ROCKS IN THE KINGURUTIK LAKE-FRASER RIVER AREA, LABRADOR (NTS 14D/9 AND 16) , 2004 .

[92]  J. Sears Linking the Mesoproterozoic Belt-Purcell and Udzha basins across the west Laurentia–Siberia connection , 2004 .

[93]  L. Hulbert,et al.  Background Pt-Pd levels in mafic large igneous provinces (LIPs) in Canada , 2003 .

[94]  P. Renne,et al.  On the ages of flood basalt events , 2003 .

[95]  R. Berman,et al.  Bedrock geology of the Ellice Hills map area and new constraints on the regional geology of the Committee Bay area, Nunavut , 2003 .

[96]  M. Stubley SPATIAL DISTRIBUTION OF KIMBERLITE IN THE SLAVE CRATON: A GEOMETRICAL APPROACH , 2003 .

[97]  J. Puffer A late neoproterozoic eastern Laurentian superplume: Location, size, chemical composition, and environmental impact , 2002 .

[98]  E. Moores Pre–1 Ga (pre-Rodinian) ophiolites: Their tectonic and environmental implications , 2002 .

[99]  Ian H. Campbe Implications of mantle plume structure for the evolution of flood basalts , 2002 .

[100]  R. West,et al.  Recent Advances in the Noril'sk Model and Its Application for Exploration of Ni-Cu-PGE Sulfide Deposits , 2002 .

[101]  W. Bleeker Archaean tectonics: a review, with illustrations from the Slave craton , 2002, Geological Society, London, Special Publications.

[102]  R. Ernst,et al.  Large mafic magmatic events through time and links to mantle-plume heads , 2001 .

[103]  J. D. Maher Manifestations of the Cretaceous High Arctic Large Igneous Province in Svalbard , 2001 .

[104]  A. Bailes,et al.  JOSLAND LAKE SILLS: U-PB AGE AND TECTONOSTRATIGRAPHIC IMPLICATIONS (PARTS OF NTS 63K AND 63N) , 2001 .

[105]  K. Condie,et al.  Archean mantle plumes: Evidence from greenstone belt geochemistry , 2001 .

[106]  R. Rainbird,et al.  The sedimentary record of mantle-plume uplift , 2001 .

[107]  A. Şengör Elevation as indicator of mantle-plume activity , 2001 .

[108]  Ross Smail,et al.  Deep-mantle plumes and ore deposits , 2001 .

[109]  O. Eldholm,et al.  Large igneous provinces: Progenitors of some ophiolites? , 2001 .

[110]  L. Wilkinson,et al.  Diabase dyke swarms in the Lac de Gras area, Northwest Territories, and their significance to kimberlite exploration: initial results , 2001 .

[111]  I. Campbell Identification of ancient mantle plumes , 2001 .

[112]  P. Thurston,et al.  Plume magmatism and crustal growth at 2.9 to 3.0 Ga in the Steep Rock and Lumby Lake area, Western Superior Province , 1999 .

[113]  D. Wyman,et al.  Komatiite–basalt–rhyolite volcanic associations in Northern Superior Province greenstone belts: significance of plume-arc interaction in the generation of the proto continental Superior Province , 1999 .

[114]  M. Sanborn-Barrie,et al.  Tectonic assembly of continental margin and oceanic terranes at 2.7 Ga in the Savant Lake-Sturgeon Lake greenstone belt, Ontario , 1999 .

[115]  J. Chiarenzelli,et al.  Precambrian geology, northern Angikuni Lake, and a transect across the Snowbird tectonic zone, western Angikuni Lake, Northwest Territories (Nunavut) , 1999 .

[116]  I. Campbell The Earth's Mantle: The Mantle's Chemical Structure: Insights from the Melting Products of Mantle Plumes , 1998 .

[117]  M. Schau Geology of the Archean Prince Albert Group in the Richards Bay area, northeastern Melville Peninsula, District of Franklin, Northwest Territories , 1997 .

[118]  C. V. Staal,et al.  Provenance of tectonic history of the Gander Zone in the Caledonian/Appalachian Orogen: Implications for the origin and assembly of Avalon , 1996 .

[119]  J. Jaeger,et al.  The influence of continental flood basalts on mass extinctions: Where do we stand? , 1996 .

[120]  C. White,et al.  U–Pb geochronologic constraints on the volcanic evolution of the Mira (Avalon) terrane, southeastern Cape Breton Island, Nova Scotia , 1993 .

[121]  W. Baragar,et al.  Volcanic Geochemistry of the Northern Segments of the Circum-Superior Belt of the Canadian Shield , 1987, Geological Society, London, Special Publications.

[122]  E. J. Schwarz,et al.  Paleomagnetism of the Circum-ungava Fold Belt Ii : Proterozoic Rocks of Richmond Gulf and Manitounuk Islands , 1981 .

[123]  E. J. Schwarz,et al.  Tectonics of the Richmond Gulf area, northern Quebec - a Hypothesis , 1980 .