Cortical cores in network dynamics

[1]  Maurizio Corbetta,et al.  A Signal-Processing Pipeline for Magnetoencephalography Resting-State Networks , 2011, Brain Connect..

[2]  Dietrich Lehmann,et al.  The resting microstate networks (RMN): cortical distributions, dynamics, and frequency specific information flow , 2014, 1411.1949.

[3]  Vincent Wens,et al.  Investigating complex networks with inverse models: analytical aspects of spatial leakage and connectivity estimation. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Yihong Yang,et al.  Spontaneous functional network dynamics and associated structural substrates in the human brain , 2015, Front. Hum. Neurosci..

[5]  O. Sporns Contributions and challenges for network models in cognitive neuroscience , 2014, Nature Neuroscience.

[6]  C. Stam,et al.  Heritability of “small‐world” networks in the brain: A graph theoretical analysis of resting‐state EEG functional connectivity , 2008, Human brain mapping.

[7]  I. Fried,et al.  Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex , 2008, Nature Neuroscience.

[8]  Cornelis J. Stam,et al.  Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain , 2008, NeuroImage.

[9]  M. Mintun,et al.  Nonoxidative glucose consumption during focal physiologic neural activity. , 1988, Science.

[10]  Walter Schneider,et al.  Identifying the brain's most globally connected regions , 2010, NeuroImage.

[11]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[12]  O. Sporns,et al.  Network hubs in the human brain , 2013, Trends in Cognitive Sciences.

[13]  Marcus E. Raichle,et al.  The Restless Brain , 2011, Brain Connect..

[14]  M. Corbetta,et al.  Large-scale cortical correlation structure of spontaneous oscillatory activity , 2012, Nature Neuroscience.

[15]  S. Della Penna,et al.  The anatomical scaffold underlying the functional centrality of known cortical hubs , 2017, Human brain mapping.

[16]  Peter Andras,et al.  Simulation of robustness against lesions of cortical networks , 2007, The European journal of neuroscience.

[17]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[18]  Jonathan D. Power,et al.  Intrinsic and Task-Evoked Network Architectures of the Human Brain , 2014, Neuron.

[19]  Darren Price,et al.  Investigating the electrophysiological basis of resting state networks using magnetoencephalography , 2011, Proceedings of the National Academy of Sciences.

[20]  M. Corbetta,et al.  Temporal dynamics of spontaneous MEG activity in brain networks , 2010, Proceedings of the National Academy of Sciences.

[21]  Leonardo L. Gollo,et al.  Neural decoding of visual stimuli varies with fluctuations in global network efficiency , 2017, bioRxiv.

[22]  Marcus Kaiser,et al.  Clustered organization of cortical connectivity , 2007, Neuroinformatics.

[23]  Mark W. Woolrich,et al.  Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity , 2014, NeuroImage.

[24]  Dimitri Van De Ville,et al.  The dynamic functional connectome: State-of-the-art and perspectives , 2017, NeuroImage.

[25]  Biyu J. He,et al.  The Temporal Structures and Functional Significance of Scale-free Brain Activity , 2010, Neuron.

[26]  O. Sporns Structure and function of complex brain networks , 2013, Dialogues in clinical neuroscience.

[27]  Michael Breakspear,et al.  Towards a statistical test for functional connectivity dynamics , 2015, NeuroImage.

[28]  Leonardo L. Gollo,et al.  Dwelling quietly in the rich club: brain network determinants of slow cortical fluctuations , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[29]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[30]  Jonathan D. Power,et al.  Evidence for Hubs in Human Functional Brain Networks , 2013, Neuron.

[31]  Matthew J. Brookes,et al.  A multi-layer network approach to MEG connectivity analysis , 2016, NeuroImage.

[32]  A. Engel,et al.  Beta-band oscillations—signalling the status quo? , 2010, Current Opinion in Neurobiology.

[33]  M. Corbetta,et al.  The Dynamical Balance of the Brain at Rest , 2011, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[34]  Keith A. Johnson,et al.  Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease , 2009, The Journal of Neuroscience.

[35]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[36]  Yong He,et al.  Identifying topological motif patterns of human brain functional networks , 2017, Human brain mapping.

[37]  O. Sporns,et al.  Motifs in Brain Networks , 2004, PLoS biology.

[38]  Olaf Sporns,et al.  Modeling the Impact of Lesions in the Human Brain , 2009, PLoS Comput. Biol..

[39]  Mason A. Porter,et al.  Task-Based Core-Periphery Organization of Human Brain Dynamics , 2012, PLoS Comput. Biol..

[40]  Viviana Betti,et al.  Dynamic reorganization of human resting-state networks during visuospatial attention , 2015, Proceedings of the National Academy of Sciences.

[41]  Mark W. Woolrich,et al.  Dynamic recruitment of resting state sub-networks , 2015, NeuroImage.

[42]  O. Jensen,et al.  Cross-frequency coupling between neuronal oscillations , 2007, Trends in Cognitive Sciences.

[43]  Catie Chang,et al.  Time–frequency dynamics of resting-state brain connectivity measured with fMRI , 2010, NeuroImage.

[44]  Abraham Z. Snyder,et al.  Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure , 2013, NeuroImage.

[45]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[46]  Alex Arenas,et al.  Mapping Multiplex Hubs in Human Functional Brain Networks , 2016, Front. Neurosci..

[47]  M Valencia,et al.  Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Gustavo Deco,et al.  Rich club organization supports a diverse set of functional network configurations , 2014, NeuroImage.

[49]  O. Sporns,et al.  Structural and Functional Aspects Relating to Cost and Benefit of Rich Club Organization in the Human Cerebral Cortex , 2013, Cerebral cortex.

[50]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[51]  Piet Van Mieghem,et al.  Disruption of Functional Brain Networks in Alzheimer's Disease: What Can We Learn from Graph Spectral Analysis of Resting-State Magnetoencephalography? , 2012, Brain Connect..

[52]  Leonardo L. Gollo,et al.  Time-resolved resting-state brain networks , 2014, Proceedings of the National Academy of Sciences.

[53]  Morten L. Kringelbach,et al.  Exploring the network dynamics underlying brain activity during rest , 2014, Progress in Neurobiology.

[54]  Simon B. Eickhoff,et al.  Microstructural grey matter parcellation and its relevance for connectome analyses , 2013, NeuroImage.

[55]  O. Sporns,et al.  Rich Club Organization of Macaque Cerebral Cortex and Its Role in Network Communication , 2012, PloS one.

[56]  Theodore J. Huppert,et al.  Whole brain functional connectivity using phase locking measures of resting state magnetoencephalography , 2014, Front. Neurosci..

[57]  Meir Shinitzky,et al.  Structural and functional aspects , 1994 .

[58]  Abraham Z. Snyder,et al.  A brief history of the resting state: The Washington University perspective , 2012, NeuroImage.

[59]  Gustavo Deco,et al.  Structural connectivity allows for multi-threading during rest: The structure of the cortex leads to efficient alternation between resting state exploratory behavior and default mode processing , 2012, NeuroImage.

[60]  M Corbetta,et al.  A Dynamic Core Network and Global Efficiency in the Resting Human Brain. , 2016, Cerebral cortex.

[61]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[62]  R. Turner,et al.  Eigenvector Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the Human Brain , 2010, PloS one.

[63]  M. Greicius,et al.  Decoding subject-driven cognitive states with whole-brain connectivity patterns. , 2012, Cerebral cortex.

[64]  O. Sporns,et al.  An Anatomical Substrate for Integration among Functional Networks in Human Cortex , 2013, The Journal of Neuroscience.

[65]  M. Corbetta,et al.  Electrophysiological signatures of resting state networks in the human brain , 2007, Proceedings of the National Academy of Sciences.

[66]  Linda Douw,et al.  Disturbed functional brain networks and neurocognitive function in low-grade glioma patients: a graph theoretical analysis of resting-state MEG , 2009, Nonlinear biomedical physics.

[67]  G. Deco,et al.  Emerging concepts for the dynamical organization of resting-state activity in the brain , 2010, Nature Reviews Neuroscience.

[68]  Edward T. Bullmore,et al.  Small-World Brain Networks Revisited , 2016, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[69]  Viviana Betti,et al.  Natural Scenes Viewing Alters the Dynamics of Functional Connectivity in the Human Brain , 2013, Neuron.

[70]  Jonathan D. Power,et al.  Recent progress and outstanding issues in motion correction in resting state fMRI , 2015, NeuroImage.

[71]  O. Sporns,et al.  High-cost, high-capacity backbone for global brain communication , 2012, Proceedings of the National Academy of Sciences.

[72]  Stephen M. Smith,et al.  Temporally-independent functional modes of spontaneous brain activity , 2012, Proceedings of the National Academy of Sciences.

[73]  Murray Shanahan,et al.  Effects of lesions on synchrony and metastability in cortical networks , 2015, NeuroImage.

[74]  Leonardo L. Gollo,et al.  Mapping how local perturbations influence systems-level brain dynamics , 2016, NeuroImage.

[75]  Morten L. Kringelbach,et al.  Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms , 2017, NeuroImage.

[76]  Leonardo L. Gollo,et al.  The frustrated brain: from dynamics on motifs to communities and networks , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[77]  Jonathan D. Power,et al.  Multi-task connectivity reveals flexible hubs for adaptive task control , 2013, Nature Neuroscience.

[78]  Rufin VanRullen,et al.  The Psychophysics of Brain Rhythms , 2011, Front. Psychology.

[79]  O. Sporns,et al.  Network centrality in the human functional connectome. , 2012, Cerebral cortex.

[80]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[81]  D Lehmann,et al.  EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. , 1987, Electroencephalography and clinical neurophysiology.

[82]  Eswar Damaraju,et al.  Tracking whole-brain connectivity dynamics in the resting state. , 2014, Cerebral cortex.

[83]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations , 2001, The Journal of Neuroscience.

[84]  M. Breakspear Dynamic models of large-scale brain activity , 2017, Nature Neuroscience.

[85]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[86]  Mark W. Woolrich,et al.  Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage , 2012, NeuroImage.

[87]  David M. Groppe,et al.  Neurophysiological Investigation of Spontaneous Correlated and Anticorrelated Fluctuations of the BOLD Signal , 2013, The Journal of Neuroscience.

[88]  Gareth R. Barnes,et al.  Frequency-dependent functional connectivity within resting-state networks: An atlas-based MEG beamformer solution , 2012, NeuroImage.

[89]  M. Mintun,et al.  Brain work and brain imaging. , 2006, Annual review of neuroscience.

[90]  Carl D. Hacker,et al.  Frequency-specific electrophysiologic correlates of resting state fMRI networks , 2017, NeuroImage.

[91]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[92]  Joerg F. Hipp,et al.  BOLD fMRI Correlation Reflects Frequency-Specific Neuronal Correlation , 2015, Current Biology.

[93]  Joseph A. Maldjian,et al.  Graph theoretical analysis of resting-state MEG data: Identifying interhemispheric connectivity and the default mode , 2014, NeuroImage.

[94]  J. Mattingley,et al.  A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields , 2016, eLife.

[95]  Matthew J. Brookes,et al.  Measuring functional connectivity using MEG: Methodology and comparison with fcMRI , 2011, NeuroImage.

[96]  Biyu J. He Scale-free brain activity: past, present, and future , 2014, Trends in Cognitive Sciences.

[97]  O. Sporns,et al.  Identification and Classification of Hubs in Brain Networks , 2007, PloS one.

[98]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[99]  Mark W. Woolrich,et al.  Adding dynamics to the Human Connectome Project with MEG , 2013, NeuroImage.

[100]  W. Singer,et al.  Synchronization of Neural Activity across Cortical Areas Correlates with Conscious Perception , 2007, The Journal of Neuroscience.

[101]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[102]  Carl D. Hacker,et al.  Resting state network estimation in individual subjects , 2013, NeuroImage.

[103]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[104]  Olaf Sporns,et al.  Mechanisms of Zero-Lag Synchronization in Cortical Motifs , 2013, PLoS Comput. Biol..

[105]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[106]  O. Sporns,et al.  Network neuroscience , 2017, Nature Neuroscience.

[107]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[108]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[109]  Nora D. Volkow,et al.  Functional connectivity hubs in the human brain , 2011, NeuroImage.

[110]  Fernando Maestú,et al.  Multimodal description of whole brain connectivity: A comparison of resting state MEG, fMRI, and DWI , 2015, Human brain mapping.

[111]  N. Volkow,et al.  Functional connectivity density mapping , 2010, Proceedings of the National Academy of Sciences.

[112]  Marina Vannucci,et al.  Time-dependence of graph theory metrics in functional connectivity analysis , 2016, NeuroImage.

[113]  Vince D. Calhoun,et al.  Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information , 2015, NeuroImage.

[114]  Gustavo Deco,et al.  Functional connectivity dynamics: Modeling the switching behavior of the resting state , 2015, NeuroImage.

[115]  Carlo Sestieri,et al.  The connectivity of functional cores reveals different degrees of segregation and integration in the brain at rest , 2013, NeuroImage.

[116]  Juliane Britz,et al.  EEG microstate sequences in healthy humans at rest reveal scale-free dynamics , 2010, Proceedings of the National Academy of Sciences.

[117]  M. Corbetta,et al.  A Cortical Core for Dynamic Integration of Functional Networks in the Resting Human Brain , 2012, Neuron.

[118]  David A. Leopold,et al.  Dynamic functional connectivity: Promise, issues, and interpretations , 2013, NeuroImage.

[119]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[120]  Chun Kee Chung,et al.  Preserved high-centrality hubs but efficient network reorganization during eyes-open state compared with eyes-closed resting state: an MEG study. , 2014, Journal of neurophysiology.

[121]  N. Logothetis,et al.  Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. , 2003, Cerebral cortex.

[122]  Justin L. Vincent,et al.  Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. , 2008, Journal of neurophysiology.

[123]  Marc Joliot,et al.  Brain activity at rest: a multiscale hierarchical functional organization. , 2011, Journal of neurophysiology.

[124]  Karl J. Friston,et al.  Active interoceptive inference and the emotional brain , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[125]  Karl J. Friston,et al.  Distributed processing; distributed functions? , 2012, NeuroImage.

[126]  Evan M. Gordon,et al.  On the Stability of BOLD fMRI Correlations , 2016, Cerebral cortex.

[127]  Stephen M Smith,et al.  Fast transient networks in spontaneous human brain activity , 2014, eLife.

[128]  S. Bressler,et al.  Operational principles of neurocognitive networks. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[129]  C. Honey,et al.  Identification and Classification of Hubs in Brain , 2007 .

[130]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[131]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[132]  C. J. Stam,et al.  Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? , 2004, Neuroscience Letters.

[133]  Biyu J. He,et al.  Electrophysiological correlates of the brain's intrinsic large-scale functional architecture , 2008, Proceedings of the National Academy of Sciences.

[134]  J. Palva,et al.  Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs , 2012, Trends in Cognitive Sciences.

[135]  Jacobus F. A. Jansen,et al.  The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures , 2010, NeuroImage.

[136]  Ruben Schmidt,et al.  Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome , 2015, BMC Neuroscience.

[137]  John A. Stankovic,et al.  Distributed Processing , 1978, Computer.

[138]  F. de Pasquale,et al.  Transient effects of tumor location on the functional architecture at rest in glioblastoma patients: three longitudinal case studies , 2016, Radiation Oncology.