Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach

An approach is presented for the atomistic study of phonon transport in real dielectric nanowires via Green's functions. The formalism is applied to investigate the phonon flow through nanowires coated by an amorphous material. Examples for a simple model system and for real Si nanowires coated by silica are given. New physical results emerge for these systems, regarding the character of the transition from ballistic to diffusive transport, the low-temperature thermal conductance, and the influence of the wire-coating interface on the thermal transport. An efficient treatment of phonon scattering by the amorphous coating is also developed, representing a valuable tool for the investigation of thermal conduction through amorphous-coated nanowires.

[1]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[2]  Sebastian Volz,et al.  Molecular dynamics simulation of thermal conductivity of silicon nanowires , 1999 .

[3]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[4]  DeWeert Mj Transition from Sharvin to Drude resistance in high-mobility wires. , 1994 .

[5]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[6]  G. Nilsson,et al.  Study of the Homology between Silicon and Germanium by Thermal-Neutron Spectrometry , 1972 .

[7]  A. Greiner,et al.  COMMENT ON : QUANTIZED THERMAL CONDUCTANCE OF DIELECTRIC QUANTUM WIRES. AUTHORS REPLY , 1998 .

[8]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.

[9]  W. Weber,et al.  Adiabatic bond charge model for the phonons in diamond, Si, Ge, and α-Sn , 1977 .

[10]  Current-Induced Forces upon Atoms Adsorbed on Conducting Carbon Nanotubes , 2001, cond-mat/0110216.

[11]  Francisco Guinea,et al.  Effective two-dimensional Hamiltonian at surfaces , 1983 .

[12]  M. G. Holland Analysis of Lattice Thermal Conductivity , 1963 .

[13]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[14]  Eugene E. Haller,et al.  Thermal conductivity of germanium crystals with different isotopic compositions , 1997 .

[15]  M. C. Cross,et al.  Effect of surface roughness on the universal thermal conductance , 2001 .

[16]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[17]  M. P. Blencowe Quantum energy flow in mesoscopic dielectric structures , 1999 .

[18]  P. Wolynes,et al.  Heat flow through an insulating nanocrystal , 2000 .

[19]  Quantum heat transfer through an atomic wire , 1999, cond-mat/9908204.

[20]  C. Beenakker Random-matrix theory of quantum transport , 1996, cond-mat/9612179.

[21]  P. Klemens,et al.  The thermal conductivity of dielectric solids at low temperatures (Theoretical) , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  M. Wybourne,et al.  Acoustic phonon modes of rectangular quantum wires , 1997 .

[23]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[24]  A. Ozpineci,et al.  Quantum effects of thermal conductance through atomic chains , 2001 .

[25]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[26]  R. Landauer,et al.  Conductance viewed as transmission , 1999 .

[27]  M. Geller,et al.  Thermal transport through a mesoscopic weak link , 2001, cond-mat/0101045.

[28]  J. Joannopoulos,et al.  Phonons in amorphous silica , 1977 .

[29]  G. Kirczenow,et al.  Quantized Thermal Conductance of Dielectric Quantum Wires , 1998, cond-mat/9801238.

[30]  Michael L. Roukes,et al.  Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K , 2002 .

[31]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[32]  Chun-Keung Loong,et al.  Phonon densities of states and related thermodynamic properties of high temperature ceramics. , 1998 .

[33]  N. Mingo Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations , 2003 .

[34]  M. Cross,et al.  Surface scattering analysis of phonon transport in the quantum limit using an elastic model , 2002, cond-mat/0204450.

[35]  M. Roukes,et al.  Heat transport in mesoscopic systems , 1998, cond-mat/9801252.