Individualized Dynamic Brain Models: Estimation and Validation with Resting-State fMRI

Abstract A key challenge for neuroscience is to develop generative, causal models of the human nervous system in an individualized, data-driven manner. Previous initiatives have either constructed biologically-plausible models that are not constrained by individual-level human brain activity or used data-driven statistical characterizations of individuals that are not mechanistic. We aim to bridge this gap with a new approach termed Mesoscale Individualized Neurodynamic (MINDy) modeling which enables networks of hundreds to thousands of nonlinear neural mass models to be fit directly to human brain data in just 1-3 minutes per subject. We demonstrate that the models are valid, reliable, and robust. We show that MINDy models generate individualized patterns of resting-state dynamics and that MINDy is better able to uncover the mechanisms underlying individual differences in resting state activity than correlative methods (functional connectivity).

[1]  Karl J. Friston,et al.  The influence of spontaneous activity on stimulus processing in primary visual cortex , 2012, NeuroImage.

[2]  Karl J. Friston,et al.  Population dynamics: Variance and the sigmoid activation function , 2008, NeuroImage.

[3]  Maria Alessandra Crisafi Dynamic Conditional Correlation , 2010 .

[4]  Jonathan D. Power,et al.  Recent progress and outstanding issues in motion correction in resting state fMRI , 2015, NeuroImage.

[5]  Bruce M Psaty,et al.  Comparison of 2 Treatment Models: Precision Medicine and Preventive Medicine. , 2018, JAMA.

[6]  Karl J. Friston,et al.  Large-scale DCMs for resting-state fMRI , 2017, Network Neuroscience.

[7]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with Engineering Applications , 1949 .

[8]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[9]  Evan M. Gordon,et al.  Precision Functional Mapping of Individual Human Brains , 2017, Neuron.

[10]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[11]  Ludovica Griffanti,et al.  Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers , 2014, NeuroImage.

[12]  Gabriele Lohmann,et al.  Critical comments on dynamic causal modelling , 2012, NeuroImage.

[13]  G. Deco,et al.  Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain , 2019, Science Advances.

[14]  Viktor K. Jirsa,et al.  The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread , 2017, NeuroImage.

[15]  Angela D Friederici,et al.  The language network , 2012, Current Opinion in Neurobiology.

[16]  Karlheinz Meier,et al.  Introducing the Human Brain Project , 2011, FET.

[17]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. B. Nebel,et al.  Quantifying the reliability of image replication studies: The image intraclass correlation coefficient (I2C2) , 2013, Cognitive, affective & behavioral neuroscience.

[19]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[20]  Sepideh Sadaghiani,et al.  Ongoing dynamics in large-scale functional connectivity predict perception , 2015, Proceedings of the National Academy of Sciences.

[21]  Andrew W. Kraft,et al.  Spontaneous Infra-slow Brain Activity Has Unique Spatiotemporal Dynamics and Laminar Structure , 2018, Neuron.

[22]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[23]  Olaf Sporns,et al.  Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks , 2015, NeuroImage.

[24]  Michael W. Cole,et al.  Activity flow over resting-state networks shapes cognitive task activations , 2016, Nature Neuroscience.

[25]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[26]  Justin L. Vincent,et al.  Intrinsic Fluctuations within Cortical Systems Account for Intertrial Variability in Human Behavior , 2007, Neuron.

[27]  Jonathan R. Polimeni,et al.  Relative latency and temporal variability of hemodynamic responses at the human primary visual cortex , 2018, NeuroImage.

[28]  M. Chun,et al.  Functional connectome fingerprinting: Identifying individuals based on patterns of brain connectivity , 2015, Nature Neuroscience.

[29]  Brian Caffo,et al.  Comparing test-retest reliability of dynamic functional connectivity methods , 2017, NeuroImage.

[30]  Y. Yamaguchi,et al.  Brain/MINDS: A Japanese National Brain Project for Marmoset Neuroscience , 2016, Neuron.

[31]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[32]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[33]  Aline Seuwen,et al.  Specificity of stimulus-evoked fMRI responses in the mouse: The influence of systemic physiological changes associated with innocuous stimulation under four different anesthetics , 2014, NeuroImage.

[34]  Viktor K. Jirsa,et al.  An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data , 2015, NeuroImage.

[35]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[36]  Eswar Damaraju,et al.  Tracking whole-brain connectivity dynamics in the resting state. , 2014, Cerebral cortex.

[37]  Dimitri Van De Ville,et al.  The dynamic functional connectome: State-of-the-art and perspectives , 2017, NeuroImage.

[38]  Kaustubh Supekar,et al.  Multivariate dynamical systems models for estimating causal interactions in fMRI , 2011, NeuroImage.

[39]  Maurizio Corbetta,et al.  Warnings and caveats in brain controllability , 2017, NeuroImage.

[40]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[41]  Viktor K. Jirsa,et al.  The Virtual Brain: a simulator of primate brain network dynamics , 2013, Front. Neuroinform..

[42]  Bharat B. Biswal,et al.  Test-retest reliability of dynamic functional connectivity in resting state fMRI , 2018, NeuroImage.

[43]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[44]  Gustavo Deco,et al.  Functional connectivity dynamics: Modeling the switching behavior of the resting state , 2015, NeuroImage.

[45]  David A. Leopold,et al.  Dynamic functional connectivity: Promise, issues, and interpretations , 2013, NeuroImage.

[46]  John D. Murray,et al.  Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics , 2019, Neuron.

[47]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[48]  Fenna M. Krienen,et al.  Opportunities and limitations of intrinsic functional connectivity MRI , 2013, Nature Neuroscience.

[49]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[50]  T. Robbins,et al.  Inhibition and the right inferior frontal cortex , 2004, Trends in Cognitive Sciences.

[51]  Timothy O. Laumann,et al.  Data Quality Influences Observed Links Between Functional Connectivity and Behavior , 2017, Cerebral cortex.

[52]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[53]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[54]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[55]  J. Fleiss,et al.  Intraclass correlations: uses in assessing rater reliability. , 1979, Psychological bulletin.

[56]  M. Breakspear Dynamic models of large-scale brain activity , 2017, Nature Neuroscience.

[57]  Steen Moeller,et al.  ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging , 2014, NeuroImage.

[58]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[59]  A. Turken,et al.  Left inferior frontal gyrus is critical for response inhibition , 2008, BMC Neuroscience.

[60]  Aaron Kucyi,et al.  Dynamic functional connectivity of the default mode network tracks daydreaming , 2014, NeuroImage.

[61]  Danielle S. Bassett,et al.  Personalized Neuroscience: Common and Individual-Specific Features in Functional Brain Networks , 2018, Neuron.

[62]  Enzo Tagliazucchi,et al.  Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep , 2015, eLife.

[63]  Thomas T. Liu,et al.  A component based noise correction method (CompCor) for BOLD and perfusion based fMRI , 2007, NeuroImage.

[64]  Biyu J. He Spontaneous and Task-Evoked Brain Activity Negatively Interact , 2013, The Journal of Neuroscience.

[65]  Euan A Ashley,et al.  The precision medicine initiative: a new national effort. , 2015, JAMA.

[66]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[67]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[68]  Steen Moeller,et al.  Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage artifacts , 2016, NeuroImage.

[69]  Timothy Dozat,et al.  Incorporating Nesterov Momentum into Adam , 2016 .

[70]  Rainer Goebel,et al.  The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution , 2011, NeuroImage.

[71]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[72]  Evan M. Gordon,et al.  Functional System and Areal Organization of a Highly Sampled Individual Human Brain , 2015, Neuron.

[73]  Aileen Schroeter,et al.  The hemodynamic response to somatosensory stimulation in mice depends on the anesthetic used: Implications on analysis of mouse fMRI data , 2015, NeuroImage.

[74]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[75]  M. D’Esposito,et al.  The variability of human BOLD hemodynamic responses , 1998, NeuroImage.

[76]  G. Deco,et al.  Emerging concepts for the dynamical organization of resting-state activity in the brain , 2010, Nature Reviews Neuroscience.