Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution

3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique – global Very Long Baseline Interferometry (VLBI) at 1.3 mm (230 GHz) – to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable γ-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array (ALMA), at an angular resolution of ∼20 μas (at a redshift of z = 0.536 this corresponds to ∼0.13 pc  ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation. We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across different imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI “core”. This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet. We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1.3 and ∼1.7 μas day−1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3 mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≲1010 K, a magnitude or more lower than typical values seen at ≥7 mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.

Daniel C. M. Palumbo | S. T. Timmer | Chih-Wei L. Huang | Alexander W. Raymond | Kyle D. Massingill | Kevin M. Silva | K. Souccar | L. Ho | J. Conway | P. Schellart | H. Falcke | T. Lauer | K. Bouman | G. Desvignes | S. Ikeda | W. Everett | B. Benson | J. Carlstrom | N. Halverson | J. Henning | D. Michalik | A. Nadolski | A. Rahlin | A. Stark | K. Story | N. Whitehorn | Shu-Hao Chang | D. James | P. Koch | L. Rezzolla | C. Kramer | K. Menten | R. Neri | Y. Huang | P. Ho | C. Liu | Chih-Cheng Chang | L. Blackburn | M. Wright | J. Cordes | E. Ros | J. Algaba | Sang-Sung Lee | M. Kino | S. Trippe | Jongho Park | Guangyao Zhao | D. Byun | M. Gurwell | Jae-Young Kim | C. Walther | P. Galison | M. Hecht | C. Gammie | N. Patel | M. Inoue | F. Schloerb | E. Fomalont | Zhi-qiang Shen | Jongsoo Kim | A. Eckart | R. Narayan | A. Hirota | N. Phillips | Michael D. Johnson | S. Doeleman | J. Wardle | S. Chatterjee | L. Loinard | M. Kramer | Kuo-Chang Han | F. Roelofs | D. Psaltis | J. Weintroub | A. Rogers | R. Plambeck | R. Freund | R. Tilanus | P. Friberg | L. Ziurys | J. Moran | K. Young | M. Titus | D. Marrone | R. Cappallo | G. Bower | T. Krichbaum | A. Roy | A. Whitney | D. Woody | V. Fish | K. Akiyama | A. Lobanov | R. Lu | A. Broderick | H. Shiokawa | C. Beaudoin | R. Blundell | M. Honma | T. Oyama | R. Primiani | J. SooHoo | F. Tazaki | J. Dexter | A. Chael | K. Asada | C. Brinkerink | G. Crew | M. Dexter | R. Gold | L. Vertatschitsch | J. Zensus | D. Haggard | G. Geertsema | Kuan-Yu Liu | R. Karuppusamy | Kuo Liu | P. Torne | I. Martí-Vidal | N. Nagar | D. Hughes | Ming-Tang Chen | R. Hesper | Ziyan Zhu | K. Toma | M. Sasada | D. Pesce | P. Tiede | H. Pu | L. Shao | N. Erickson | A. Marscher | S. Jorstad | José L. Gómez | U. Pen | J. Mao | A. Kamble | I. Bemmel | R. Keisler | E. Leitch | D. Bintley | I. Coulson | D. Ward-Thompson | D. Muders | S. Navarro | S. Heyminck | B. Jannuzi | A. Montaña | M. Zeballos | C. Risacher | A. Young | K. Chatterjee | I. Natarajan | A. Alberdi | W. Alef | R. Azulay | A. Baczko | D. Ball | M. Baloković | J. Barrett | W. Boland | M. Bremer | R. Brissenden | S. Britzen | D. Broguière | T. Bronzwaer | Chi-kwan Chan | Yongjun Chen | I. Cho | P. Christian | Yuzhu Cui | J. Davelaar | M. D. Laurentis | R. Deane | J. Dempsey | R. Eatough | R. Fraga-Encinas | C. Fromm | Roberto García | O. Gentaz | B. Georgiev | C. Goddi | M. Gu | K. Hada | Lei Huang | S. Issaoun | M. Janssen | B. Jeter | Wu Jiang | T. Jung | M. Karami | T. Kawashima | G. Keating | M. Kettenis | Junhan Kim | J. Koay | S. Koyama | C. Kuo | Yan-Rong Li | Zhiyuan Li | M. Lindqvist | E. Liuzzo | W. Lo | C. Lonsdale | N. MacDonald | S. Markoff | S. Matsushita | L. Matthews | L. Medeiros | Y. Mizuno | I. Mizuno | K. Moriyama | M. Mościbrodzka | C. Müller | H. Nagai | Masanori Nakamura | G. Narayanan | C. Ni | A. Noutsos | H. Okino | H. Olivares | G. Ortiz-León | F. Ozel | D. Palumbo | V. Piétu | A. PopStefanija | O. Porth | B. Prather | J. A. Preciado-López | V. Ramakrishnan | R. Rao | M. Rawlings | B. Ripperda | M. Rose | A. Roshanineshat | H. Rottmann | C. Ruszczyk | B. Ryan | K. Rygl | S. Sánchez | D. Sánchez-Arguelles | T. Savolainen | K. Schuster | D. Small | B. Sohn | T. Trent | S. Tsuda | H. Langevelde | D. V. Rossum | J. Wagner | N. Wex | R. Wharton | M. Wielgus | G. Wong | Qingwen Wu | Z. Younsi | F. Yuan | Ye-Fei Yuan | Shan-Shan Zhao | Alexander Allardi | R. Amestica | J. Anczarski | U. Bach | F. Baganoff | R. Berthold | J. Blanchard | S. Bustamente | E. Castillo-Domínguez | Song-Chu Chang | Chung-Chen Chen | R. Chilson | T. Chuter | R. C. Rosado | J. Crowley | M. Derome | S. Dornbusch | K. A. Dudevoir | S. Dzib | C. Eckert | Aaron Faber | J. Farah | Vernon Fath | T. Folkers | D. Forbes | A. Gómez-Ruiz | D. Gale | F. Gao | D. Graham | C. Greer | R. Grosslein | F. Gueth | Chih-Chiang Han | Jinchi Hao | Yutaka Hasegawa | A. Hernández-Gómez | R. Herrero-Illana | J. Hoge | C. Impellizzeri | Homin Jiang | K. Kimura | Y. Kono | D. Kubo | J. Kuroda | R. Lacasse | R. Laing | Chao-Te Li | L. Lin | Li-Ming Lu | R. Marson | P. Martin-Cocher | Callie Matulonis | M. McColl | S. McWhirter | H. Messias | Z. Meyer-Zhao | W. Montgomerie | M. Mora-Klein | J. Neilsen | C. Nguyen | H. Nishioka | T. Norton | M. Nowak | G. Nystrom | H. Ogawa | P. Oshiro | H. Parsons | J. Peñalver | M. Poirier | N. Pradel | P. Raffin | G. Reiland | Ignacio Ruiz | Alejandro F. Sáez-Madain | R. Sassella | P. Shaw | David R. Smith | W. Snow | Don Sousa | Sridharan T. K. | R. Srinivasan | William Stahm | T. Wei | J. Wouterloot | P. Yamaguchi | Chen-Yu Yu | Shuo Zhang | A. Jiménez-Rosales | D. Yoon | R. Lico | D. John | G. Musoke | E. Traianou | D. Broguiere | M. Laurentis | J. Gómez | Alejandro F. Saez-Madain | F. Gao | M. Nakamura | G. Ortiz-Léon | Lijing Shao | K. Massingill | S. Timmer | R. García | A. Raymond | E. Castillo-Dominguez | J. Penalver | Li‐Ming Lu | Qingwen Wu | Qingwen Wu | David Ball | Shiro Ikeda | Aleksandar PopStefanija | Olivier Gentaz | Britton Jeter | C. Kuo | Wen-Ping Lo | Kotaro Moriyama | Jorge A. Preciado-López | Hung-Yi Pu | Arash Roshanineshat | Doosoo Yoon | M. Kramer | Yau-De Huang | K. Silva | A. Faber | D. Hughes

[1]  Manash R. Samal,et al.  Multiwavelength behaviour of the blazar 3C 279: decade-long study from γ-ray to radio , 2020, Monthly Notices of the Royal Astronomical Society.

[2]  S. Markoff,et al.  The unique case of the AGN core of M87: a misaligned low power blazar? , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  A. Lobanov,et al.  Is there a non-stationary γ-ray emission zone 42 pc from the 3C 279 core? , 2019, Astronomy & Astrophysics.

[4]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[5]  Chih-Wei L. Huang,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019, The Astrophysical Journal.

[6]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[7]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[8]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[9]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. III. Data Processing and Calibration , 2019, The Astrophysical Journal.

[10]  Roger Cappallo,et al.  EHT-HOPS Pipeline for Millimeter VLBI Data Reduction , 2019, The Astrophysical Journal.

[11]  L. Blackburn,et al.  Calibration of ALMA as a Phased Array. ALMA Observations During the 2017 VLBI Campaign , 2019, Publications of the Astronomical Society of the Pacific.

[12]  R. Blandford,et al.  Relativistic Jets in Active Galactic Nuclei , 2018, 1812.06025.

[13]  E. Ros,et al.  Global Millimeter VLBI Array Survey of Ultracompact Extragalactic Radio Sources at 86 GHz , 2018, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[14]  T. Krichbaum,et al.  Possible evidence of a supermassive black hole binary with two radio jets in blazar 3C279 , 2018, Astronomy & Astrophysics.

[15]  L. Carrasco,et al.  Multiwavelength photometric and spectropolarimetric analysis of the FSRQ 3C 279 , 2018, Monthly Notices of the Royal Astronomical Society.

[16]  B. Rani,et al.  Exploring the Connection between Parsec-scale Jet Activity and Broadband Outbursts in 3C 279 , 2018, 1805.04723.

[17]  J. Algaba,et al.  Exploring the Variability of the Flat-spectrum Radio Source 1633+382. II. Physical Properties , 2018, The Astrophysical Journal.

[18]  E. Ros,et al.  The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale , 2018, Astronomy & Astrophysics.

[19]  J. A. Zensus,et al.  A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii , 2018, 1804.02198.

[20]  Kazunori Akiyama,et al.  Interferometric Imaging Directly with Closure Phases and Closure Amplitudes , 2018, 1803.07088.

[21]  M. Lister,et al.  MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017 , 2017, 1711.07802.

[22]  E. Ros,et al.  Radio observations of active galactic nuclei with mm-VLBI , 2017, The Astronomy and Astrophysics Review.

[23]  A. Lähteenmäki,et al.  Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program , 2017, 1711.03983.

[24]  Sang-Sung Lee,et al.  Probing the innermost regions of AGN jets and their magnetic fields with RadioAstron II. Observations of 3C 273 at minimum activity , 2017, 1707.01386.

[25]  Engineering,et al.  A connection between γ-ray and parsec-scale radio flares in the blazar 3C 273 , 2017, 1703.07976.

[26]  K. Bouman,et al.  Imaging the Schwarzschild-radius-scale Structure of M87 with the Event Horizon Telescope Using Sparse Modeling , 2017, 1702.07361.

[27]  Kazunori Akiyama,et al.  Superresolution Full-polarimetric Imaging for Radio Interferometry with Sparse Modeling , 2017, 1702.00424.

[28]  B. Rani,et al.  Location of γ-ray emission and magnetic field strengths in OJ 287 , 2016, 1607.00725.

[29]  A. Marscher,et al.  The VLBA-BU-BLAZAR Multi-Wavelength Monitoring Program , 2016 .

[30]  M. Sikora,et al.  Gamma-Ray Observations of Active Galactic Nuclei , 2016 .

[31]  R. Walker,et al.  Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii , 2016, 1608.05063.

[32]  K. Bouman,et al.  HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE , 2016, 1605.06156.

[33]  D. Thompson,et al.  MINUTE-TIMESCALE >100 MeV γ-RAY VARIABILITY DURING THE GIANT OUTBURST OF QUASAR 3C 279 OBSERVED BY FERMI-LAT IN 2015 JUNE , 2016, The Astrophysical Journal.

[34]  Sang-Sung Lee,et al.  ACCELERATION OF COMPACT RADIO JETS ON SUB-PARSEC SCALES , 2016, 1604.02207.

[35]  J. A. Zensus,et al.  First 3 mm-VLBI imaging of the two-sided jet in Cygnus A - Zooming into the launching region , 2016, 1603.04221.

[36]  E. Ros,et al.  MOJAVE. XIII. PARSEC-SCALE AGN JET KINEMATICS ANALYSIS BASED ON 19 YEARS OF VLBA OBSERVATIONS AT 15 GHz , 2016, 1603.03882.

[37]  F. Schinzel,et al.  Polarization angle swings in blazars: The case of 3C 279 , 2016, 1603.00249.

[38]  Alan Roy,et al.  Calibration of mixed-polarization interferometric observations Tools for the reduction of interferometric data from elements with linear and circular polarization receivers , 2016, 1601.04266.

[39]  Christina Freytag,et al.  Radiative Processes In Astrophysics , 2016 .

[40]  Paul S. Smith,et al.  A MULTI-WAVELENGTH POLARIMETRIC STUDY OF THE BLAZAR CTA 102 DURING A GAMMA-RAY FLARE IN 2012 , 2015, 1508.07254.

[41]  W. Alef,et al.  First 230 GHz VLBI fringes on 3C 279 using the APEX Telescope , 2015, 1506.03244.

[42]  J. Chiang,et al.  RAPID VARIABILITY OF BLAZAR 3C 279 DURING FLARING STATES IN 2013−2014 WITH JOINT FERMI-LAT, NuSTAR, SWIFT, AND GROUND-BASED MULTI-WAVELENGTH OBSERVATIONS , 2015, 1502.04699.

[43]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[44]  E. Ros,et al.  MOJAVE. XII. ACCELERATION AND COLLIMATION OF BLAZAR JETS ON PARSEC SCALES , 2014, 1410.8502.

[45]  T. Krichbaum,et al.  Evidence of internal rotation and a helical magnetic field in the jet of the quasar NRAO150 , 2014, 1404.5961.

[46]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[47]  Astronomy,et al.  MAGIC observations and multifrequency properties of the flat spectrum radio quasar 3C 279 in 2011 , 2013, 1311.2833.

[48]  A. Marscher TURBULENT, EXTREME MULTI-ZONE MODEL FOR SIMULATING FLUX AND POLARIZATION VARIABILITY IN BLAZARS , 2013, 1311.7665.

[49]  Mareki Honma,et al.  THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII , 2013, 1308.1411.

[50]  M. Wright,et al.  FINE-SCALE STRUCTURE OF THE QUASAR 3C 279 MEASURED WITH 1.3 mm VERY LONG BASELINE INTERFEROMETRY , 2013, 1305.3359.

[51]  E. Ros,et al.  Catching the radio flare in CTA 102 - II. VLBI kinematic analysis , 2012, 1211.3606.

[52]  P. Hardee,et al.  ANATOMY OF HELICAL EXTRAGALACTIC JETS: THE CASE OF S5 0836+710 , 2012, 1202.1182.

[53]  R. Dodson,et al.  ERRATIC JET WOBBLING IN THE BL LACERTAE OBJECT OJ287 REVEALED BY SIXTEEN YEARS OF 7 mm VLBA OBSERVATIONS , 2011, 1112.4747.

[54]  Masanori Nakamura,et al.  THE STRUCTURE OF THE M87 JET: A TRANSITION FROM PARABOLIC TO CONICAL STREAMLINES , 2011, 1110.1793.

[55]  M. Lister,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS , 2012 .

[56]  C. Fromm,et al.  THE ACCELERATING JET OF 3C 279 , 2012 .

[57]  Relativistic Outflow Drives Gamma-Ray Emission in 3C345 , 2011, 1111.2045.

[58]  T. Piran,et al.  Variability in Blazars: Clues from PKS 2155-304 , 2011, 1107.5812.

[59]  L. Gurvits,et al.  Radio structure of the blazar 1156 + 295 with sub-pc resolution , 2011, 1102.3046.

[60]  K. Nalewajko POLARIZATION SWINGS FROM CURVED TRAJECTORIES OF THE EMITTING REGIONS , 2010, 1208.5472.

[61]  The Fermi-LAT Collaboration,et al.  A change in the optical polarization associated with a γ-ray flare in the blazar 3C 279 , 2010, Nature.

[62]  P. Giommi,et al.  A change in the optical polarization associated with a γ-ray flare in the blazar 3C 279 , 2010 .

[63]  C. Villforth,et al.  The host galaxy of 3C 279 , 2009, 0908.1618.

[64]  U. Michigan,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 FULL POLARIZATION SPECTRA OF 3C 279 , 2022 .

[65]  D. Uzdensky,et al.  Fast TeV variability in blazars: jets in a jet , 2009, 0901.1877.

[66]  A. Lahteenmaki,et al.  Doppler factors, Lorentz factors and viewing angles for quasars, BL Lacertae objects and radio galaxies , 2008, 0811.4278.

[67]  M. Lister,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VII. BLAZAR JET ACCELERATION , 2009 .

[68]  J. Algaba,et al.  The 15-43 GHz parsec-scale circular polarization of 41 active galactic nuclei , 2008, 0809.2556.

[69]  H. R. Miller,et al.  Correlated Multi-Wave Band Variability in the Blazar 3C 279 from 1996 to 2007 , 2008, 0808.2194.

[70]  Paul S. Smith,et al.  The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst , 2008, Nature.

[71]  A. Marscher,et al.  Relativistic Jets in Active Galactic Nuclei , 2006 .

[72]  M. Lister,et al.  MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. II. First-Epoch 15 GHz Circular Polarization Results , 2006 .

[73]  Shanghai Astronomical Observatory, Chinese Academy of Sciences , 2006 .

[74]  M. Cohen,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. XI. SPECTRAL DISTRIBUTIONS , 2014, 1404.0014.

[75]  A. Lobanov,et al.  A supermassive binary black hole in the quasar 3C 345 , 2004, astro-ph/0411417.

[76]  E. Ros,et al.  An Extremely Curved Relativistic Jet in PKS 2136+141 , 2004, astro-ph/0412656.

[77]  M. Lister,et al.  Change in Speed and Direction of the Jet near the Core in the Quasar 3C 279 , 2004 .

[78]  Shanghai,et al.  A relativistic helical jet in the γ-ray AGN 1156+295 , 2004, astro-ph/0401627.

[79]  M. Cohen,et al.  Jet Collimation in Action: Realignment on Kiloparsec Scales in 3C 279 , 2003, astro-ph/0304132.

[80]  S. Iguchi,et al.  A Helical Magnetic Field in the jet of 3C 273(Session 1:Astrophysical Jets,High-Energy Emission from Accreting Compact Objects,Korea-Japan Seminar) , 2002, astro-ph/0205497.

[81]  A. Lobanov,et al.  A Cosmic Double Helix in the Archetypical Quasar 3C273 , 2001, Science.

[82]  P. Hardee On Three-dimensional Structures in Relativistic Hydrodynamic Jets , 2000 .

[83]  J. Wardle,et al.  Detection and Measurement of Parsec-Scale Circular Polarization in Four AGNs , 1999, astro-ph/0007396.

[84]  Ju l 2 00 0 Detection and Measurement of Parsec-Scale Circular Polarization in Four AGN , 1999 .

[85]  Z. Abraham,et al.  The Precessing Jet in 3C 279 , 1998 .

[86]  L. Gurvits,et al.  Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure , 2005, astro-ph/0505536.

[87]  P. Marziani,et al.  Comparative Analysis of the High- and Low-Ionization Lines in the Broad-Line Region of Active Galactic Nuclei , 1996 .

[88]  A. Marscher Probes of the inner jets of blazars. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[89]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[90]  Anthony C. S. Readhead,et al.  Equipartition brightness temperature and the inverse Compton catastrophe , 1994 .

[91]  Walter Kieran Gear,et al.  Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273. , 1985 .

[92]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[93]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[94]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[95]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .

[96]  W. Cannon,et al.  The small-scale structure of radio galaxies and quasi-stellar sources at 3.8 centimeters. , 1971 .

[97]  A E Rogers,et al.  Quasars Revisited: Rapid Time Variations Observed Via Very-Long-Baseline Interferometry , 1971, Science.

[98]  D. Robertson,et al.  Quasars: Millisecond-of-Arc Structure Revealed by Very-Long-Baseline Interferometry , 1971, Science.

[99]  Kenneth I. Kellermann,et al.  The Spectra of Opaque Radio Sources , 1969 .