Flatness-Based Trajectory Planning/Replanning for a Quadrotor Unmanned Aerial Vehicle

A flatness-based flight trajectory planning/replanning strategy is proposed for a quadrotor unmanned aerial vehicle (UAV). In the nominal situation (fault-free case), the objective is to drive the system from an initial position to a final one without hitting the actuator constraints while minimizing the total time of the mission or minimizing the total energy spent. When actuator faults occur, fault-tolerant control (FTC) is combined with trajectory replanning to change the reference trajectory in function of the remaining resources in the system. The approach employs differential flatness to express the control inputs to be applied in the function of the desired trajectories and formulates the trajectory planning/replanning problem as a constrained optimization problem.

[1]  James F. Whidborne,et al.  A prototype of an autonomous controller for a quadrotor UAV , 2007, 2007 European Control Conference (ECC).

[2]  Y. Bouktir,et al.  Trajectory planning for a quadrotor helicopter , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[3]  Sophie Tarbouriech,et al.  Control of linear systems subject to input constraints: a polynomial approach , 2001, Autom..

[4]  D. Cooke,et al.  OPTIMAL TRAJECTORY PLANNING AND LQR CONTROL FOR A QUADROTOR UAV , 2006 .

[5]  H. Zoladek The topological proof of Abel-Ruffini theorem , 2000 .

[6]  Youmin Zhang,et al.  Fault tolerant control system design with explicit consideration of performance degradation , 2003 .

[7]  C. Ascher,et al.  Adaptive path planning for a VTOL-UAV , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[8]  Sophie Tarbouriech,et al.  Robust stability of uncertain polytopic linear time-delay systems with saturating inputs: an LMI approach , 2002, Comput. Electr. Eng..

[9]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[10]  Jean Lévine,et al.  Flat output characterization for linear systems using polynomial matrices , 2003, Syst. Control. Lett..

[11]  S. P. Novikov,et al.  THE TOPOLOGICAL PROOF OF ABEL–RUFFINI THEOREM , 2007 .

[12]  C. Ascher,et al.  Adaptive path planning for VTOL-UAVs , 2009, IEEE Aerospace and Electronic Systems Magazine.

[13]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[14]  D. Theilliol,et al.  Fault Tolerant Control System against actuator failures based on re-configuring reference input , 2009, 2009 International Conference on Advances in Computational Tools for Engineering Applications.

[15]  Li-Chun Lai,et al.  Time-Optimal Control of a Hovering Quad-Rotor Helicopter , 2006, J. Intell. Robotic Syst..

[16]  E. Mosca,et al.  Nonlinear control of constrained linear systems via predictive reference management , 1997, IEEE Trans. Autom. Control..

[17]  Maria M. Seron,et al.  Actuator Fault-Tolerant Control based on , 2008 .

[18]  Ilya V. Kolmanovsky,et al.  Nonlinear tracking control in the presence of state and control constraints: a generalized reference governor , 2002, Autom..

[19]  Veit Hagenmeyer,et al.  Continuous-time non-linear flatness-based predictive control: an exact feedforward linearisation setting with an induction drive example , 2008, Int. J. Control.

[20]  Eugênio B. Castelan,et al.  A reduced-order framework applied to linear systems with constrained controls , 1996, IEEE Trans. Autom. Control..

[21]  Cédric Join,et al.  Flatness-based fault tolerant control of a nonlinear MIMO system using algebraic derivative estimation , 2007 .

[22]  V. Dardinier-Maron,et al.  A fault-tolerant control design against major actuator failures: application to a three-tank system , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[23]  Steven Lake Waslander,et al.  Multi-agent quadrotor testbed control design: integral sliding mode vs. reinforcement learning , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[25]  G. N. Roberts,et al.  Thruster fault diagnosis and accommodation for open-frame underwater vehicles , 2004 .

[26]  Ümit Özgüner,et al.  Sliding Mode Control of a Quadrotor Helicopter , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[27]  Yuri B. Shtessel,et al.  Higher order sliding modes , 2008 .

[28]  Youmin Zhang,et al.  Actuator Fault Tolerant Control Design Based on a Reconfigurable Reference Input , 2008, Int. J. Appl. Math. Comput. Sci..

[29]  Yoshiaki Kuwata,et al.  Trajectory planning for unmanned vehicles using robust receding horizon control , 2007 .