On the numerical discretisation of stochastic oscillators

In this article, we propose an approach, based on the variation-of-constants formula, for the numerical discretisation over long-time intervals of several stochastic oscillators. Additive and multiplicative noises are treated separately. The proposed schemes permit the use of large step sizes in the presence of a high frequency in the problem and offer various additional properties. These new numerical integrators can be viewed as a stochastic-generalisation of the trigonometric integrators for highly oscillatory deterministic problems.

[1]  Marlis Hochbruck,et al.  Error analysis of exponential integrators for oscillatory second-order differential equations , 2006 .

[2]  R. Skeel,et al.  Analysis of a few numerical integration methods for the Langevin equation , 2003 .

[3]  Ryogo Kubo,et al.  STOCHASTIC LIOUVILLE EQUATIONS , 1963 .

[4]  Francesco Petruccione,et al.  Simulation of one-dimensional noisy Hamiltonian systems and their application to particle storage rings , 1994 .

[5]  R. Skeel,et al.  Langevin stabilization of molecular dynamics , 2001 .

[6]  Jerrold E. Marsden,et al.  Structure preserving Stochastic Impulse Methods for stiff Langevin systems with a uniform global error of order 1 or 1/2 on position , 2010, 1006.4657.

[7]  G. N. Milstein,et al.  Symplectic Integration of Hamiltonian Systems with Additive Noise , 2001, SIAM J. Numer. Anal..

[8]  Lijin Wang,et al.  Predictor-corrector methods for a linear stochastic oscillator with additive noise , 2007, Math. Comput. Model..

[9]  Peter D. Drummond,et al.  Computer simulations of multiplicative stochastic differential equations , 1991 .

[10]  Henri Schurz Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise , 2008 .

[11]  S. V. Tret'jakov,et al.  Numerical integration of Hamiltonian systems with external noise , 1994 .

[12]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[13]  Á. Tocino,et al.  On preserving long-time features of a linear stochastic oscillator , 2007 .

[14]  Quantum dynamics with non-Markovian fluctuating parameters. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  G. N. Milstein,et al.  Quasi‐symplectic methods for Langevin‐type equations , 2003 .

[16]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[17]  N. G.,et al.  Quasi-symplectic methods for Langevin-type equations , 2003 .

[18]  P. Kloeden,et al.  Numerical Solution of Sde Through Computer Experiments , 1993 .

[19]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[20]  Desmond J. Higham,et al.  Numerical simulation of a linear stochastic oscillator with additive noise , 2004 .

[21]  G. N. Milstein,et al.  Numerical Methods for Stochastic Systems Preserving Symplectic Structure , 2002, SIAM J. Numer. Anal..

[22]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.