On Stable Plane Vortex Flows of an Ideal Fluid

2D-flows of an ideal incompressible fluid are treated in a rectangular. If analytical (resolved in series of powers of coordinates), the stationary flows are uniquely determined with the inflow vorticity. When excluded vortices of a spectral origin, such flows prove to be stable.

[1]  O. V. Troshkin On the stability of a plane flow vortex , 2014 .

[2]  O. V. Troshkin Nonlinear stability of a parabolic velocity profile in a plane periodic channel , 2013 .

[3]  O. V. Troshkin Nonlinear stability of Couette, Poiseuille, and Kolmogorov plane channel flows , 2012 .

[4]  O. V. Troshkin A dissipative top in a weakly compact lie algebra and stability of basic flows in a plane channel , 2012 .

[5]  V. Betelin,et al.  On the theory of countercurrent flow in a rotating viscous heat-conducting gas , 2011 .

[6]  O. V. Troshkin A rotating gas tube: heating by torsion , 2010 .

[7]  J. Strutt Scientific Papers: Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density , 2009 .

[8]  O. V. Troshkin An alternative theory of the periodic layer , 2008 .

[9]  O. V. Troshkin “Transport” form of the equations for a periodic incompressible layer , 2008 .

[10]  E. M. Landis,et al.  Second Order Equations of Elliptic and Parabolic Type , 1997 .

[11]  J. A. Walker,et al.  The general problem of the stability of motion , 1994 .

[12]  O. V. Troshkin A TWO-DIMENSIONAL FLOW PROBLEM FOR STEADY-STATE EULER EQUATIONS , 1990 .

[13]  O. V. Troshkin Topological analysis of the structure of hydrodynamic flows , 1988 .

[14]  O. V. Troshkin Algebraic structure of two-dimensional steady-state Navier-Stokes equations and global uniqueness theorems , 1988 .

[15]  L. Fraenkel,et al.  A global theory of steady vortex rings in an ideal fluid , 1973 .

[16]  V. S. Vladimirov,et al.  Equations of mathematical physics , 1972 .

[17]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[18]  P. Pedley,et al.  An Introduction to Fluid Dynamics , 1968 .

[19]  W. Velte Stabilität und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen beim Taylorproblem , 1966 .

[20]  R. D. Richtmyer Taylor instability in shock acceleration of compressible fluids , 1960 .

[21]  D. J. Lewis The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  Geoffrey Ingram Taylor,et al.  The formation of a blast wave by a very intense explosion. - II. The atomic explosion of 1945 , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  G. Taylor The formation of a blast wave by a very intense explosion I. Theoretical discussion , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  G. Taylor The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  M. Morse,et al.  Topological Methods in the Theory of Functions of a Single Complex Variable: III. Casual Isomorphisms in the Theory of Pseudo-Harmonic Functions , 1946 .

[26]  M. Morse,et al.  Topological Methods in the Theory of Functions of a Single Complex Variable I. Deformation Types of Locally Simple Plane Curves , 1945 .

[27]  J. H. PEARCE,et al.  Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen , 1945, Nature.

[28]  W. Wolibner Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long , 1933 .

[29]  J. Kendall,et al.  Separation of Isotopes , 1923, Nature.

[30]  R. S. Mulliken THE SEPARATION OF ISOTOPES BY THERMAL AND PRESSURE DIFFUSION , 1922 .

[31]  O. Belotserkovskii Numerical Experiment in Turbulence: from Order to Chaos , 1996 .

[32]  O. V. Troshkin Nontraditional methods in mathematical hydrodynamics , 1995 .

[33]  E. Meshkov Instability of the interface of two gases accelerated by a shock wave , 1969 .

[34]  Tosio Kato,et al.  On classical solutions of the two-dimensional non-stationary Euler equation , 1967 .

[35]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[36]  G. N. Iakovlev,et al.  The bifurcation of fluid flow between rotating cylinders , 1966 .

[37]  Hermann Weyl,et al.  The method of orthogonal projection in potential theory , 1940 .

[38]  Proceedings of the London Mathematical Society , 1881, Nature.

[39]  H. Helmholtz Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. , 1858 .