On the algebraic Properties of Stochastic Arithmetic. Comparison to Interval Arithmetic

Interval arithmetic and stochastic arithmetic have been both developed for the same purpose, i. e. to control errors coming from floating point arithmetic of computers. Interval arithmetic delivers guaranteed bounds for numerical results whereas stochastic arithmetic provides confidence intervals with known probability. The algebraic properties of stochastic arithmetic are studied with an emphasis on the structure of the set of stochastic numbers. Some new properties of stochastic numbers are obtained based on the comparison with interval arithmetic in midpoint-radius form.

[1]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[2]  R. W. Hamming,et al.  On the distribution of numbers , 1970, Bell Syst. Tech. J..

[3]  Richard Goodman,et al.  Convergence Estimates for the Distribution of Trailing Digits , 1976, JACM.

[4]  Donald Ervin Knuth,et al.  The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series in Computer Science and Information , 1978 .

[5]  J. Vignes,et al.  An Efficient Stochastic Method for Round-Off Error Analysis , 1985, Accurate Scientific Computations.

[6]  J. Vignes,et al.  Zéro mathématique et zéro informatique , 1986 .

[7]  Jean Vignes,et al.  Review on stochastic approach to round-off error analysis and its applications , 1988 .

[8]  A. Neumaier Interval methods for systems of equations , 1990 .

[9]  J.-M. Chesneaux,et al.  Les fondements de l'arithmétique stochastique , 1992 .

[10]  Jean Vignes,et al.  A stochastic arithmetic for reliable scientific computation , 1993 .

[11]  J. Vignes,et al.  Validation of results of collocation methods for ODEs with the CADNA library , 1996 .

[12]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[13]  Kohshi Okumura,et al.  The Contribution of T. Sunaga to Interval Analysis and Reliable Computing , 1998, SCAN.

[14]  Svetoslav Markov,et al.  An iterative method for algebraic solution to interval equations , 1999 .

[15]  S. Rump Fast and Parallel Interval Arithmetic , 1999 .

[16]  T. Csendes Developments in Reliable Computing , 2000 .

[17]  Zenon Kulpa,et al.  Diagrammatic representation for interval arithmetic , 2001 .

[18]  Svetoslav Markov On the Algebraic Properties of Intervals and Some Applications , 2001, Reliab. Comput..