Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis

[1]  Z. Xiu,et al.  Enhanced Production of 2,3-Butanediol from Sugarcane Molasses , 2015, Applied Biochemistry and Biotechnology.

[2]  Huadong Pei,et al.  Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain , 2014, Biotechnology for Biofuels.

[3]  Shangtian Yang,et al.  Improved Production of 2,3-Butanediol in Bacillus amyloliquefaciens by Over-Expression of Glyceraldehyde-3-Phosphate Dehydrogenase and 2,3-butanediol Dehydrogenase , 2013, PloS one.

[4]  M. Oh,et al.  Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production. , 2013, Bioresource technology.

[5]  Shangtian Yang,et al.  Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of co-substrates on 2,3-butanediol production , 2013, Applied Microbiology and Biotechnology.

[6]  J. Hamann,et al.  Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785 , 2013, Applied Microbiology and Biotechnology.

[7]  G. Guo,et al.  Method of 2,3-butanediol production from glycerol and acid-pretreated rice straw hydrolysate by newly isolated strains: pre-evaluation as an integrated biorefinery process. , 2013, Bioresource technology.

[8]  Cuiqing Ma,et al.  Efficient 2,3-Butanediol Production from Cassava Powder by a Crop-Biomass-Utilizer, Enterobacter cloacae subsp. dissolvens SDM , 2012, PloS one.

[9]  A. Kondo,et al.  Enhanced production of 2,3-butanediol by engineered Bacillus subtilis , 2012, Applied Microbiology and Biotechnology.

[10]  M. Oh,et al.  Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production , 2012, Applied Microbiology and Biotechnology.

[11]  M. Oh,et al.  Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production , 2012, Applied Microbiology and Biotechnology.

[12]  Shangtian Yang,et al.  Production of 2,3‐butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens , 2011, Journal of basic microbiology.

[13]  P. Ouyang,et al.  Microbial 2,3-butanediol production: a state-of-the-art review. , 2011, Biotechnology advances.

[14]  Sha Li,et al.  Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol. , 2010, Bioresource technology.

[15]  Guo-qiang Chen,et al.  Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition , 2010, Applied Microbiology and Biotechnology.

[16]  Cuiqing Ma,et al.  Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production , 2010, Applied Microbiology and Biotechnology.

[17]  Ke-Ke Cheng,et al.  Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca , 2010 .

[18]  K. Prather,et al.  Metabolic engineering of acetoin and meso‐2, 3‐butanediol biosynthesis in E. coli , 2010, Biotechnology journal.

[19]  He Huang,et al.  Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene , 2010, Applied Microbiology and Biotechnology.

[20]  W. Grajek,et al.  Biotechnological production of 2,3-butanediol--current state and prospects. , 2009, Biotechnology advances.

[21]  Z. Xiu,et al.  Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae , 2009, Applied Microbiology and Biotechnology.

[22]  J. Ninow,et al.  Apple Pomace: A Versatile Substrate for Biotechnological Applications , 2008, Critical reviews in biotechnology.

[23]  W. Weigand,et al.  Kinetics of 2,3‐butanediol fermentation by Bacillus amyloliquefaciens: Effect of initial substrate concentration and aeration , 2007 .

[24]  Lei Zhang,et al.  Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. , 2007, Biotechnology advances.

[25]  M. Penttilä,et al.  Expression of Vitreoscilla hemoglobin improves the metabolism of xylose in recombinant yeast Saccharomyces cerevisiae under low oxygen conditions , 2006 .

[26]  Agnieszka Nawirska,et al.  Dietary fibre fractions from fruit and vegetable processing waste , 2005 .

[27]  D. Webster,et al.  Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene , 2004, Bioprocess and biosystems engineering.

[28]  A. H. Kapadi,et al.  Production of 2,3-butanediol from glucose byBacillus licheniformis , 1992, World journal of microbiology & biotechnology.

[29]  J Keller,et al.  A microbial culture with oxygen‐sensitive product distribution as a potential tool for characterizing bioreactor oxygen transport , 1985, Biotechnology and bioengineering.

[30]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[31]  G. L. Miller Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar , 1959 .

[32]  S. Vishwakarma Bioconversion of whey to 2,3-butanediol using Klebsiella oxytoca NRRL-13-199 , 2014 .

[33]  J. Ninow,et al.  Apple pomace: a versatile substrate for biotechnological applications. , 2008, Critical reviews in biotechnology.

[34]  Amie D. Sluiter,et al.  Determination of Structural Carbohydrates and Lignin in Biomass , 2004 .

[35]  B. Dalrymple,et al.  High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis , 1999 .

[36]  J. Bailey,et al.  Intracellular Expression of VitreoscillaHemoglobin (VHb) Enhances Total Protein Secretion and Improves the Production of α‐Amylase and Neutral Protease in Bacillus subtilis , 1996, Biotechnology progress.

[37]  P. Trinder,et al.  An improved colour reagent for the determination of blood glucose by the oxidase system. , 1972, The Analyst.