Neuroprotective effects of the free radical scavenger Edaravone (MCI-186) in mice permanent focal brain ischemia

[1]  R. Chen,et al.  Possible Inhibition of Focal Cerebral Ischemia by Angiotensin II Type 2 Receptor Stimulation , 2004, Circulation.

[2]  Mamoru Tamura,et al.  In vivo tracking of bone marrow stromal cells transplanted into mice cerebral infarct by fluorescence optical imaging. , 2004, Brain research. Brain research protocols.

[3]  S. Kuroda,et al.  FK506 reduces infarct volume due to permanent focal cerebral ischemia by maintaining BAD turnover and inhibiting cytochrome c release , 2004, Brain Research.

[4]  H. Utsumi,et al.  Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. , 2003 .

[5]  E. Wei,et al.  Neuroprotective effect of ONO-1078, a leukotriene receptor antagonist, on transient global cerebral ischemia in rats. , 2003, Acta pharmacologica Sinica.

[6]  V. Vallyathan,et al.  Hydroxyl radical formation is greater in striatal core than in penumbra in a rat model of ischemic stroke , 2003, Journal of neuroscience research.

[7]  D. DeLong,et al.  Effect of a Novel Free Radical Scavenger, Edaravone (MCI-186), on Acute Brain Infarction , 2003, Cerebrovascular Diseases.

[8]  L. Iacovitti,et al.  Antioxidant compounds protect dopamine neurons from death due to oxidative stress in vitro , 2002, Brain Research.

[9]  J. Wilcox,et al.  Upregulation of Nox‐Based NAD(P)H Oxidases in Restenosis After Carotid Injury , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[10]  P. Chan Reactive Oxygen Radicals in Signaling and Damage in the Ischemic Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  A. Majid,et al.  Differences in Vulnerability to Permanent Focal Cerebral Ischemia Among 3 Common Mouse Strains , 2000, Stroke.

[12]  K. Fung,et al.  MCI-186: further histochemical and biochemical evidence of neuroprotection. , 2000, Life sciences.

[13]  M. Moskowitz,et al.  Pathobiology of ischaemic stroke: an integrated view , 1999, Trends in Neurosciences.

[14]  F. Barone,et al.  Inflammatory Mediators and Stroke: New Opportunities for Novel Therapeutics , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  M. Niwa,et al.  Involvement of free radicals in cerebral vascular reperfusion injury evaluated in a transient focal cerebral ischemia model of rat. , 1999, Free radical biology & medicine.

[16]  Y. Ikeda,et al.  Neuroprotective effects depend on the model of focal ischemia following middle cerebral artery occlusion. , 1998, European journal of pharmacology.

[17]  B. Davidson,et al.  Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. , 1998, Circulation research.

[18]  M. Nakashima,et al.  Inhibitory effect of MCI-186, a free radical scavenger, on cerebral ischemia following rat middle cerebral artery occlusion. , 1998, General pharmacology.

[19]  Toshiaki Watanabe,et al.  Delayed neuronal death prevented by inhibition of increased hydroxyl radical formation in a transient cerebral ischemia , 1997, Brain Research.

[20]  T. Watanabe,et al.  Effects of a novel free radical scavenger, MCl-186, on ischemic brain damage in the rat distal middle cerebral artery occlusion model. , 1997, The Journal of pharmacology and experimental therapeutics.

[21]  R. Busto,et al.  Journal of Cerebral Blood Flow and Metabolism Simultaneous Measurement of Salicylate Hydroxylation and Glutamate Release in the Penumbral Cortex following Transient Middle Cerebral Artery Occlusion in Rats , 2022 .

[22]  K. Kogure,et al.  Role of Neutrophils in Radical Production during Ischemia and Reperfusion of the Rat Brain: Effect of Neutrophil Depletion on Extracellular Ascorbyl Radical Formation , 1995, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  T. Watanabe,et al.  Protective effects of MCI-186 on cerebral ischemia: possible involvement of free radical scavenging and antioxidant actions. , 1994, The Journal of pharmacology and experimental therapeutics.

[24]  Barry Halliwell,et al.  Reactive Oxygen Species and the Central Nervous System , 1992, Journal of neurochemistry.

[25]  B. Siesjö Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. , 1992, Journal of neurosurgery.

[26]  R A Swanson,et al.  A Semiautomated Method for Measuring Brain Infarct Volume , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  T. Watanabe,et al.  Effect of MCI-186 on brain edema in rats. , 1989, Stroke.

[28]  I. Morita,et al.  Preventive effect of MCI-186 on 15-HPETE induced vascular endothelial cell injury in vitro. , 1988, Prostaglandins, leukotrienes, and essential fatty acids.

[29]  K. Abe,et al.  Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. , 1988, Stroke.

[30]  L. Pitts,et al.  Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. , 1986, Stroke.

[31]  L. Pitts,et al.  Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. , 1986, Stroke.

[32]  S. Kuroda,et al.  Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. , 1997, Clinical neuroscience.

[33]  R. Floyd,et al.  Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress , 1992, Annals of neurology.

[34]  C. Agardh,et al.  Free radicals and brain damage. , 1989, Cerebrovascular and brain metabolism reviews.