Visual object recognition using multi-scale local binary patterns and line segment feature

This paper presents two visual features for object recognition. One is multi-scale Local Binary Pattern (LBP) operator extracted from coarse-to-fine image blocks to well describe texture structures. The other is line segment feature based on Gestalt-inspired region segmentation and fast Hough transform to capture accurate geometric information. The experiments on the SIMPLIcity database and PASCAL VOC 2007 benchmark show the effectiveness of line segment feature, and significant accuracy improvement by using fine-level blocks for LBP. Moreover, fusing LBP from different block levels further boosts the performance and outperforms the state-of-the-art SIFT. Both features also prove complementary to SIFT.

[1]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Shaogang Gong,et al.  Robust facial expression recognition using local binary patterns , 2005, IEEE International Conference on Image Processing 2005.

[3]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[4]  C. H. Chen,et al.  Handbook of Pattern Recognition and Computer Vision , 1993 .

[5]  M. Topi,et al.  Texture classification by multi-predicate local binary pattern operators , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[6]  Guojun Lu,et al.  Content-based Image Retrieval Using Gabor Texture Features , 2000 .

[7]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[9]  Matti Pietikäinen,et al.  Unsupervised texture segmentation using feature distributions , 1997, Pattern Recognit..

[10]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Chee Sun Won,et al.  Efficient use of local edge histogram descriptor , 2000, MULTIMEDIA '00.

[13]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[14]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[15]  M. Topi,et al.  Robust texture classification by subsets of local binary patterns , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[16]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[17]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Jean-Michel Morel,et al.  From Gestalt Theory to Image Analysis: A Probabilistic Approach , 2007 .

[19]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[20]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..