A 5(3) pair of explicit ARKN methods for the numerical integration of perturbed oscillators

A new embedded pair of explicit RKN methods specially adapted to the numerical integration of perturbed oscillators is obtained. This pair depends on a parameter v = ωh > 0 (h is the integration step and ω is the dominant frequency), and it has four stages and algebraic orders five and three. The numerical experiments carried out show that the new pair is very competitive when it is compared with high-quality codes proposed in the scientific literature.

[1]  Jesús Vigo-Aguiar,et al.  AN EMBEDDED EXPONENTIALLY-FITTED RUNGE-KUTTA METHOD FOR THE NUMERICAL SOLUTION OF THE SCHRODINGER EQUATION AND RELATED PERIODIC INITIAL-VALUE PROBLEMS , 2000 .

[2]  J. M. Franco Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .

[3]  M. K. Jain A modification of the stiefel-bettis method for nonlinearly damped oscillators , 1988 .

[4]  H. De Meyer,et al.  Exponentially fitted Runge-Kutta methods , 2000 .

[5]  D. G. Bettis Numerical integration of products of fourier and ordinary polynomials , 1970 .

[6]  D. G. Bettis Runge-Kutta algorithms for oscillatory problems , 1979 .

[7]  Pablo Martín,et al.  A new family of Runge–Kutta type methods for the numerical integration of perturbed oscillators , 1999, Numerische Mathematik.

[8]  J. M. Franco An embedded pair of exponentially fitted explicit Runge-Kutta methods , 2002 .

[9]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[10]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[11]  Moawwad E. A. El-Mikkawy,et al.  Families of Runge-Kutta-Nystrom Formulae , 1987 .

[12]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[13]  Ana B. González,et al.  New methods for oscillatory problems based on classical codes , 2002 .

[14]  Beatrice Paternoster,et al.  Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .

[15]  H. De Meyer,et al.  Exponentially-fitted explicit Runge–Kutta methods , 1999 .

[16]  High order adaptive methods of Nyström-Cowell type , 1997 .

[17]  D. G. Bettis,et al.  Stabilization of Cowell's method , 1969 .