Fabrication of zirconium silicide intermetallic compounds with 16H-type crystal structure
暂无分享,去创建一个
[1] Y. Kondo,et al. Reduction of thermal expansion anisotropy for intermetallic silicides of 16H crystal structure , 1996 .
[2] M. Akinc,et al. Thermal expansion anisotropy of Ti5Si3 , 1994 .
[3] T. S. Srivatsan,et al. Processing and fabrication of advanced materials for high temperature applications-II/ editors V.A. Ravi, T.S. Srivatsan , 1993 .
[4] K. Ishizaki,et al. Design and Synthesize of New Ternary Zirconium Silicide Intermetallic Compounds with the 16H Crystal Structure , 1993 .
[5] P. Scardi,et al. Thermal Expansion Anisotropy of Ceria-Stabilized Tetragonal Zirconia , 1992 .
[6] G. Frommeyer,et al. Microstructures and properties of high melting point intermetallic Ti5Si3 and TiSi2 compounds , 1992 .
[7] K. Ishizaki,et al. Design and production of the Zr_3Ti_2Si_3 intermetallic compound , 1991 .
[8] K. Ishizaki,et al. Synthesis of intermetallics for high temperature structural applications: (Mn5Si3)16H crystal structure , 1991, Journal of Materials Science.
[9] K. Ishizaki,et al. Next Generation of High Temperature Structural Intermetallic Compounds , 1991 .
[10] D. Schwartz,et al. Silicide-matrix materials for high-temperature applications , 1989 .
[11] Kohichi Tanaka. Evaluation of Elastic/Plastic Indentation Stress to Determine Fracture Toughness , 1984 .
[12] A. Evans. Microfracture from thermal expansion anisotropy—I. Single phase systems , 1978 .
[13] C. H. Dauben. Crystal Structures of Transition Metal Silicides , 1957 .
[14] H. Nowotny,et al. Das Verhalten metallreicher, hochschmelzender Silizide gegenüber Bor, Kohlenstoff, Stickstoff und Sauerstoff , 1956 .
[15] H. Nowotny,et al. Zum Aufbau des Systems: Zirkonium-Silizium , 1953 .