Fabrication of zirconium silicide intermetallic compounds with 16H-type crystal structure

[1]  Y. Kondo,et al.  Reduction of thermal expansion anisotropy for intermetallic silicides of 16H crystal structure , 1996 .

[2]  M. Akinc,et al.  Thermal expansion anisotropy of Ti5Si3 , 1994 .

[3]  T. S. Srivatsan,et al.  Processing and fabrication of advanced materials for high temperature applications-II/ editors V.A. Ravi, T.S. Srivatsan , 1993 .

[4]  K. Ishizaki,et al.  Design and Synthesize of New Ternary Zirconium Silicide Intermetallic Compounds with the 16H Crystal Structure , 1993 .

[5]  P. Scardi,et al.  Thermal Expansion Anisotropy of Ceria-Stabilized Tetragonal Zirconia , 1992 .

[6]  G. Frommeyer,et al.  Microstructures and properties of high melting point intermetallic Ti5Si3 and TiSi2 compounds , 1992 .

[7]  K. Ishizaki,et al.  Design and production of the Zr_3Ti_2Si_3 intermetallic compound , 1991 .

[8]  K. Ishizaki,et al.  Synthesis of intermetallics for high temperature structural applications: (Mn5Si3)16H crystal structure , 1991, Journal of Materials Science.

[9]  K. Ishizaki,et al.  Next Generation of High Temperature Structural Intermetallic Compounds , 1991 .

[10]  D. Schwartz,et al.  Silicide-matrix materials for high-temperature applications , 1989 .

[11]  Kohichi Tanaka Evaluation of Elastic/Plastic Indentation Stress to Determine Fracture Toughness , 1984 .

[12]  A. Evans Microfracture from thermal expansion anisotropy—I. Single phase systems , 1978 .

[13]  C. H. Dauben Crystal Structures of Transition Metal Silicides , 1957 .

[14]  H. Nowotny,et al.  Das Verhalten metallreicher, hochschmelzender Silizide gegenüber Bor, Kohlenstoff, Stickstoff und Sauerstoff , 1956 .

[15]  H. Nowotny,et al.  Zum Aufbau des Systems: Zirkonium-Silizium , 1953 .