Kronecker product approximation for preconditioning in three-dimensional imaging applications

We derive Kronecker product approximations, with the help of tensor decompositions, to construct approximations of severely ill-conditioned matrices that arise in three-dimensional (3-D) image processing applications. We use the Kronecker product approximations to derive preconditioners for iterative regularization techniques; the resulting preconditioned algorithms allow us to restore 3-D images in a computationally efficient manner. Through examples in microscopy and medical imaging, we show that the Kronecker approximation preconditioners provide a powerful tool that can be used to improve efficiency of iterative image restoration algorithms.

[1]  Misha Elena Kilmer,et al.  Iterative Regularization and MINRES , 1999, SIAM J. Matrix Anal. Appl..

[2]  A. Diaspro,et al.  Two-photon excitation imaging based on a compact scanning head , 1999, IEEE Engineering in Medicine and Biology Magazine.

[3]  Yuxiang Xing,et al.  Fast preconditioned conjugate gradient reconstruction for 2D SPECT , 2002, 2002 IEEE Nuclear Science Symposium Conference Record.

[4]  Tamara G. Kolda,et al.  Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..

[5]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[6]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[7]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[8]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[9]  C. Loan,et al.  Approximation with Kronecker Products , 1992 .

[10]  Misha Elena Kilmer,et al.  Cauchy-like Preconditioners for Two-Dimensional Ill-Posed Problems , 1999, SIAM J. Matrix Anal. Appl..

[11]  Michael K. Ng,et al.  Kronecker Product Approximations forImage Restoration with Reflexive Boundary Conditions , 2003, SIAM J. Matrix Anal. Appl..

[12]  Linda Kaufman,et al.  Maximum likelihood, least squares, and penalized least squares for PET , 1993, IEEE Trans. Medical Imaging.

[13]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[14]  Mental Disorders,et al.  Mathematics and physics of emerging biomedical imaging , 1996 .

[15]  J. Nagy,et al.  Steepest Descent, CG, and Iterative Regularization of Ill-Posed Problems , 2003 .

[16]  Frank Natterer,et al.  Mathematical methods in image reconstruction , 2001, SIAM monographs on mathematical modeling and computation.

[17]  P. Hansen,et al.  Exploiting Residual Information in the Parameter Choice for Discrete Ill-Posed Problems , 2006 .

[18]  J. Nagy,et al.  Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques , 1996 .

[19]  Misha Elena Kilmer,et al.  Pivoted Cauchy-Like Preconditioners for Regularized Solution of Ill-Posed Problems , 1999, SIAM J. Sci. Comput..

[20]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[21]  James G. Nagy,et al.  Optimal Kronecker Product Approximation of Block Toeplitz Matrices , 2000, SIAM J. Matrix Anal. Appl..

[22]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[23]  J. Nagy,et al.  Enforcing nonnegativity in image reconstruction algorithms , 2000, SPIE Optics + Photonics.

[24]  S. Ridgway Adaptive Optics , 2022 .

[25]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[26]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[27]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[28]  M. Hanke Conjugate gradient type methods for ill-posed problems , 1995 .

[29]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[30]  Jeffrey A. Fessler Preconditioning methods for shift-variant image reconstruction , 1997, Proceedings of International Conference on Image Processing.

[31]  Ge Wang,et al.  Spiral CT image deblurring for cochlear implantation , 1998, IEEE Transactions on Medical Imaging.