Conceptualizing Hybrid Human-Machine Systems and Interaction

The synthetic hybridization between humans and machines has reached a new level in recent decades being a result of the increasing convergence of technologies and advances in different scientific fields. Human-machine interfaces are becoming not only multi-modal, but also shift within the physiology of the human, thereby also shifting the boundaries between the human and the machine and posing new opportunities and challenges for systems design and integration that demand for more holistic perspectives. After an overview of the evolution of machines and human-tool interaction this article conceptualizes human-machine systems as task-centered distributed physio-cognitive systems based on theoretical thoughts on perception, form, types of interaction and related interaction loops.

[1]  David Meister,et al.  The History of Human Factors and Ergonomics , 1999 .

[2]  Amy Isard,et al.  Situated Reference in a Hybrid Human-Robot Interaction System , 2010, INLG.

[3]  Niels Henze,et al.  Gesture recognition with a Wii controller , 2008, TEI.

[4]  Rainer Dorau Emotionales Interaktionsdesign - Gesten und Mimik interaktiver Systeme , 2011, X.media.press.

[5]  A. Maravita,et al.  Tools for the body (schema) , 2004, Trends in Cognitive Sciences.

[6]  Allen Newell,et al.  Human Problem Solving. , 1973 .

[7]  Ketil Bo Man Machine Interaction , 1980, CAD Advanced Course.

[8]  Deb Roy,et al.  The affordance-based concept , 2005 .

[9]  Gavriel Salvendy,et al.  Handbook of Human Factors and Ergonomics: Salvendy/Handbook of Human Factors 4e , 2012 .

[10]  Donald A. Norman,et al.  Psychology of everyday things , 1990 .

[11]  Thomas Hermann,et al.  MULTIMODAL CLOSED-LOOP HUMAN MACHINE INTERACTION , 2010 .

[12]  Dennis J. McFarland,et al.  Brain–computer interfaces for communication and control , 2002, Clinical Neurophysiology.

[13]  Homayoon Kazerooni,et al.  Exoskeletons for human power augmentation , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Michael G. Strintzis,et al.  3D Modeling and Animation: Synthesis and Analysis Techniques for the Human Body , 2004 .

[15]  Franz Reuleaux,et al.  The Kinematics of Machinery , 2016, Nature.

[16]  Donald A. Norman,et al.  Stages and Levels in Human-Machine Interaction , 1984, Int. J. Man Mach. Stud..

[17]  W Karwowski,et al.  Ergonomics and human factors: the paradigms for science, engineering, design, technology and management of human-compatible systems , 2005, Ergonomics.

[18]  A. Iriki The neural origins and implications of imitation, mirror neurons and tool use , 2006, Current Opinion in Neurobiology.

[19]  Alex. B. W. Kennedy,et al.  The Kinematics of Machinery: Outlines of a Theory of Machines , 2006 .

[20]  K. Yau,et al.  Interoception: the sense of the physiological condition of the body , 2003, Current Opinion in Neurobiology.

[21]  Kostas Karpouzis,et al.  Facial Expression and Gesture Analysis for Emotionally-Rich Man-Machine Interaction , 2004 .

[22]  Bob Fields,et al.  ANALYSING HUMAN-COMPUTER INTERACTION AS DISTRIBUTED COGNITION: THE RESOURCES MODEL , 1999 .

[23]  Georges M. Fadel,et al.  The Affordance Structure Matrix: A Concept Exploration and Attention Directing Tool for Affordance Based Design , 2007 .

[24]  S. Brison The Intentional Stance , 1989 .

[25]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[26]  Erik Hollnagel,et al.  Task Analysis: Why, What, and How , 2006 .

[27]  Jiajie Zhang,et al.  Representations in Distributed Cognitive Tasks , 1994, Cogn. Sci..

[28]  Georges M. Fadel,et al.  An affordance-based approach to architectural theory, design, and practice , 2009 .

[29]  R. Weidner,et al.  Concept and Exemplary Realization of Human Hybrid Robot for Supporting Manual Assembly Tasks , 2014 .

[30]  Stephen M. Rao,et al.  The evolution of brain activation during temporal processing , 2001, Nature Neuroscience.

[31]  Thierry Morineau Turing machine task analysis: a method for modelling affordances in the design process , 2011 .

[32]  Guy André Broy Orchestrating Human-Centered Design , 2013, Springer London.

[33]  Bin He,et al.  BRAIN^COMPUTER INTERFACE , 2007 .

[34]  Didier Fass,et al.  Augmented Human Engineering: A Theoretical and Experimental Approach to Human Systems Integration , 2012 .

[35]  John F. Bradley,et al.  Future reasoning machines: mind and body , 2005 .

[36]  Karl-Friedrich Kraiss,et al.  Advanced Man-Machine Interaction , 2006 .

[37]  Keiichi Sato,et al.  Affordances in Product Architecture: Linking Technical Functions and Users’ Tasks , 2005 .

[38]  Brian R. Duffy,et al.  Anthropomorphism and the social robot , 2003, Robotics Auton. Syst..

[39]  P. Brey Human Enhancement and Personal Identity. , 2009 .

[40]  J. J. Gibson The theory of affordances , 1977 .

[41]  Jose L Pons,et al.  Advanced Hybrid Technology for Neurorehabilitation: The HYPER Project , 2012 .

[42]  Sigvard Strandh,et al.  A history of the machine , 1979 .

[43]  Gavriel Salvendy,et al.  Handbook of Human Factors and Ergonomics , 2005 .

[44]  G M Edelman,et al.  Bernstein's dynamic view of the brain: the current problems of modern neurophysiology (1945). , 1998, Motor control.

[45]  Alexander Kennedy The kinematics of machinery , 1881 .

[46]  D. C. Englebart,et al.  Augmenting human intellect: a conceptual framework , 1962 .

[47]  Thomas B. Sheridan,et al.  Man-machine systems;: Information, control, and decision models of human performance , 1974 .