CD4+ T Cells Tolerizes Beryllium-Specific Pathogenic Recombinant HLA-DP2 Binds Beryllium and

Brian Scott and Gregory G. BurrowsDavid M. Edwards, Yuan K. Chou, Arthur A. Vandenbark,Douglas G. Mack, Roberto Meza-Romero, Jianya Huan, Andrew P. Fontenot, Timothy S. Keizer, Mark McCleskey,http://www.jimmunol.org/content/177/6/3874J Immunol€2006; 177:3874-3883; ;Referenceshttp://www.jimmunol.org/content/177/6/3874.full#ref-list-1This article cites 64 articles, 31 of which you can access for free at: Subscriptionshttp://jimmunol.org/subscriptionsInformation about subscribing to The Journal of Immunology is online at: Permissionshttp://www.aai.org/ji/copyright.htmlSubmit copyright permission requests at: Email Alertshttp://jimmunol.org/cgi/alerts/etocReceive free email-alerts when new articles cite this article. Sign up at:

[1]  L. Newman,et al.  Expansions of T-cell subsets expressing particular T-cell receptor variable regions in chronic beryllium disease. , 1998, American journal of respiratory cell and molecular biology.

[2]  R. Burrell,et al.  Delayed hypersensitivity to beryllium compounds. , 1973, Journal of immunology.

[3]  Friedrich Herberg,et al.  Metal-Protein Complex-Mediated Transport and Delivery of Ni2+ to TCR/MHC Contact Sites in Nickel-Specific Human T Cell Activation1 , 2004, The Journal of Immunology.

[4]  L. Newman,et al.  Beryllium presentation to CD4+ T cells underlies disease-susceptibility HLA-DP alleles in chronic beryllium disease. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  B. Nemery,et al.  Susceptibility to hard metal lung disease is strongly associated with the presence of glutamate 69 in HLA‐DPβ chain , 1997, European journal of immunology.

[6]  Timothy S. Keizer,et al.  Novel binding of beryllium to dicarboxyimidazole-based model compounds and polymers. , 2005, Inorganic chemistry.

[7]  D. Bourdette,et al.  Rudimentary TCR Signaling Triggers Default IL-10 Secretion by Human Th1 Cells1 , 2001, The Journal of Immunology.

[8]  B. Palmer,et al.  Frequency of beryllium-specific, central memory CD4+ T cells in blood determines proliferative response. , 2005, The Journal of clinical investigation.

[9]  R. Lechler,et al.  HLA-DP Allele-Specific T Cell Responses to Beryllium Account for DP-Associated Susceptibility to Chronic Beryllium Disease1 , 2001, The Journal of Immunology.

[10]  Klaus Panthel,et al.  Alteration of a model antigen by Au(III) leads to T cell sensitization to cryptic peptides , 1996, European journal of immunology.

[11]  Maria V. Tejada-Simon,et al.  Naturally Processed HLA Class II Peptides Reveal Highly Conserved Immunogenic Flanking Region Sequence Preferences That Reflect Antigen Processing Rather Than Peptide-MHC Interactions1 , 2001, The Journal of Immunology.

[12]  Williams Wj,et al.  Laser microprobe mass spectrometry (LAMMS) analysis of beryllium, sarcoidosis and other granulomatous diseases. , 1989 .

[13]  D. Monos,et al.  Human leukocyte antigen Class II amino acid epitopes: susceptibility and progression markers for beryllium hypersensitivity. , 2002, American journal of respiratory and critical care medicine.

[14]  M. Amicosante,et al.  Beryllium binding to HLA-DP molecule carrying the marker of susceptibility to berylliosis glutamate beta 69. , 2001, Human immunology.

[15]  C. Pace,et al.  How to measure and predict the molar absorption coefficient of a protein , 1995, Protein science : a publication of the Protein Society.

[16]  D. Bourdette,et al.  Design, engineering and production of functional single-chain T cell receptor ligands. , 1999, Protein engineering.

[17]  P. Marrack,et al.  Production of soluble MHC class II proteins with covalently bound single peptides , 1994, Nature.

[18]  R. Mariuzza,et al.  Structural basis for the binding of an immunodominant peptide from myelin basic protein in different registers by two HLA-DR2 proteins. , 2000, Journal of molecular biology.

[19]  H. Bächinger,et al.  Design, Engineering, and Production of Human Recombinant T Cell Receptor Ligands Derived from Human Leukocyte Antigen DR2* , 2001, The Journal of Biological Chemistry.

[20]  L. Newman,et al.  Secondary Ion Mass Spectroscopy Demonstrates Retention of Beryllium in Chronic Beryllium Disease Granulomas , 2005, Journal of occupational and environmental medicine.

[21]  R. Sorrentino,et al.  HLA‐DP molecules bind cobalt: a possible explanation for the genetic association with hard metal disease , 1999, European journal of immunology.

[22]  L. Richeldi,et al.  HLA-DPB1 glutamate 69: a genetic marker of beryllium disease. , 1993, Science.

[23]  L. Newman,et al.  Target organ localization of memory CD4(+) T cells in patients with chronic beryllium disease. , 2002, The Journal of clinical investigation.

[24]  D. Fremont,et al.  Structures of an MHC Class II Molecule with Covalently Bound Single Peptides , 1996, Science.

[25]  P. S. White,et al.  Differential susceptibilities to chronic beryllium disease contributed by different Glu69 HLA-DPB1 and -DPA1 alleles. , 1999, Journal of immunology.

[26]  Don C. Wiley,et al.  Crystal Structure of HLA-DR2 (DRA*0101, DRB1*1501) Complexed with a Peptide from Human Myelin Basic Protein , 1998, The Journal of experimental medicine.

[27]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[28]  H. Offner,et al.  Two-domain MHC class II molecules form stable complexes with myelin basic protein 69-89 peptide that detect and inhibit rat encephalitogenic T cells and treat experimental autoimmune encephalomyelitis. , 1998, Journal of immunology.

[29]  K. Wucherpfennig,et al.  Anergy Induction by Dimeric TCR Ligands1 , 2001, The Journal of Immunology.

[30]  J. Kappler,et al.  Components of the Ligand for a Ni++ Reactive Human T Cell Clone , 2003, The Journal of experimental medicine.

[31]  J. van Bergen,et al.  A New Type of Metal Recognition by Human T Cells , 2003, The Journal of experimental medicine.

[32]  P. Sadler,et al.  T cell cross‐reactivity to heavy metals: identical cryptic peptides may be presented from protein exposed to different metals , 1998, European journal of immunology.

[33]  S. Porcelli,et al.  Antigen presentation by CD1 and MHC-encoded class I-like molecules. , 1996, Current opinion in immunology.

[34]  L. Stern,et al.  The class II MHC protein HLA-DR1 in complex with an endogenous peptide: implications for the structural basis of the specificity of peptide binding. , 1997, Structure.

[35]  B. Nag,et al.  Functionally Active Recombinant and Chain-Peptide Complexes of Human Major Histocompatibility Class II Molecules (*) , 1996, The Journal of Biological Chemistry.

[36]  A. Weinberg,et al.  Activation Pathways Implicate Anti-HLA-DP and Anti-LFA-1 Antibodies as Lead Candidates for Intervention in Chronic Berylliosis1 , 2005, The Journal of Immunology.

[37]  D. Bourdette,et al.  T‐cell hybridoma specific for myelin oligodendrocyte glycoprotein‐35–55 peptide produced from HLA‐DRB1*1501‐transgenic mice , 2004, Journal of neuroscience research.

[38]  L. Fugger,et al.  Recombinant TCR Ligand Induces Tolerance to Myelin Oligodendrocyte Glycoprotein 35-55 Peptide and Reverses Clinical and Histological Signs of Chronic Experimental Autoimmune Encephalomyelitis in HLA-DR2 Transgenic Mice1 , 2003, The Journal of Immunology.

[39]  D. Bourdette,et al.  Rationally designed mutations convert complexes of human recombinant T cell receptor ligands into monomers that retain biological activity. , 2005, Journal of chemical technology and biotechnology.

[40]  B. Nag,et al.  Refolding and Reconstitution of Functionally Active Complexes of Human Leukocyte Antigen DR2 and Myelin Basic Protein Peptide from Recombinant and Polypeptide Chains (*) , 1995, The Journal of Biological Chemistry.

[41]  D. Wiley,et al.  Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1 , 1993, Nature.

[42]  W C Johnson,et al.  Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. , 1986, Analytical biochemistry.

[43]  R. Crystal,et al.  Maintenance of alveolitis in patients with chronic beryllium disease by beryllium-specific helper T cells. , 1989, The New England journal of medicine.

[44]  J. Bill,et al.  Beryllium Presentation to CD4+ T Cells Is Dependent on a Single Amino Acid Residue of the MHC Class II β-Chain1 , 2005, The Journal of Immunology.

[45]  L. Newman,et al.  CD28 costimulation independence of target organ versus circulating memory antigen-specific CD4+ T cells. , 2003, The Journal of clinical investigation.

[46]  C. Nombela,et al.  Characterization of natural peptide ligands from HLA-DP2: new insights into HLA-DP peptide-binding motifs , 2004, Immunogenetics.

[47]  A. Vandenbark,et al.  Self‐presentation of beryllium by BAL CD4+ T cells: T cell–T cell interactions and their potential role in chronic beryllium disease , 2006, European journal of immunology.

[48]  L. Fugger,et al.  Myelin oligodendrocyte glycoprotein‐35–55 peptide induces severe chronic experimental autoimmune encephalomyelitis in HLA‐DR2‐transgenic mice , 2004, European journal of immunology.

[49]  Hans-Georg Rammensee,et al.  Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints of processing, and general rules , 2004, Immunogenetics.

[50]  D. Jewell,et al.  Use of complete eluted peptide sequence data from HLA-DR and -DQ molecules to predict T cell epitopes, and the influence of the nonbinding terminal regions of ligands in epitope selection. , 1998, Journal of immunology.

[51]  G. Burrows Systemic immunomodulation of autoimmune disease using MHC-derived recombinant TCR ligands. , 2005, Current drug targets. Inflammation and allergy.

[52]  L. Newman,et al.  Identification of pathogenic T cells in patients with beryllium-induced lung disease. , 1999, Journal of immunology.

[53]  P. Griem,et al.  Metal ion induced autoimmunity. , 1995, Current opinion in immunology.

[54]  A. Fontenot,et al.  Genetic susceptibility and immune-mediated destruction in beryllium-induced disease. , 2005, Trends in immunology.

[55]  S. Sriram,et al.  Soluble MHC II-peptide complexes induce antigen-specific apoptosis in T cells. , 1996, Cellular immunology.

[56]  Timothy S. Keizer,et al.  Predicting 9Be nuclear magnetic resonance chemical shielding tensors utilizing density functional theory. , 2004, Journal of the American Chemical Society.

[57]  H M Holden,et al.  X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. , 1995, Biochemistry.

[58]  Alain Sanson,et al.  HLA-DP4, the Most Frequent HLA II Molecule, Defines a New Supertype of Peptide-Binding Specificity1 , 2002, The Journal of Immunology.

[59]  J. Strominger,et al.  HLA-DP2: self peptide sequences and binding properties. , 1997, Journal of immunology.

[60]  W. J. Williams,et al.  New aid for diagnosing chronic beryllium disease (CBD): laser ion mass analysis (LIMA). , 1986, Journal of clinical pathology.