Asset price modeling: decision aids for scheduling and hedging (DASH) in deregulated electricity markets: a stochastic programming approach to power portfolio optimization

The DASH model for Power Portfolio Optimization provides a tool which helps decision-makers coordinate production decisions with opportunities in the wholesale power market. The methodology is based on a stochastic programming model which selects portfolio positions that perform well on a variety of scenarios generated through statistical modeling and optimization. When compared with a commonly used fixed-mix policy, our experiments demonstrate that the DASH model provides significant advantages over several fixed-mix policies.

[1]  Iivo Vehviläinen Basics of electricity derivative pricing in competitive markets , 2002 .

[2]  Jery R. Stedinger,et al.  SOCRATES: A system for scheduling hydroelectric generation under uncertainty , 1995, Ann. Oper. Res..

[3]  P. Carpentier,et al.  Stochastic optimization of unit commitment: a new decomposition framework , 1996 .

[4]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[5]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[6]  Stein W. Wallace,et al.  Generating Scenario Trees for Multistage Decision Problems , 2001, Manag. Sci..

[7]  William T. Ziemba,et al.  Formulation of the Russell-Yasuda Kasai Financial Planning Model , 1998, Oper. Res..

[8]  John M. Mulvey,et al.  Formulating Two-Stage Stochastic Programs for Interior Point Methods , 1991, Oper. Res..

[9]  W. Ziemba,et al.  Hedging electricity portfolios via stochastic programming , 2002 .

[10]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[11]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[12]  W. Ziemba,et al.  Worldwide asset and liability modeling , 1998 .

[13]  Hélyette Geman,et al.  Fundamentals of Electricity Derivatives , 1999 .

[14]  John R. Birge,et al.  A stochastic model for the unit commitment problem , 1996 .

[15]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[16]  Jitka Dupacová,et al.  Scenario reduction in stochastic programming , 2003, Math. Program..

[17]  Claude Lemaréchal,et al.  Bundle Methods in Stochastic Optimal Power Management: A Disaggregated Approach Using Preconditioners , 2001, Comput. Optim. Appl..

[18]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[19]  Michal Kaut,et al.  A Heuristic for Moment-Matching Scenario Generation , 2003, Comput. Optim. Appl..

[20]  Suvrajeet Sen,et al.  A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems , 2004, Manag. Sci..

[21]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[22]  A. Eydeland,et al.  Energy and Power Risk Management: New Developments in Modeling, Pricing, and Hedging , 2002 .

[23]  Samer Takriti,et al.  Incorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment Problem , 2000, Oper. Res..

[24]  Stein-Erik Fleten,et al.  The performance of stochastic dynamic and fixed mix portfolio models , 2002, Eur. J. Oper. Res..

[25]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[26]  Jason Wu,et al.  A Stochastic Programming Model for Currency Option Hedging , 2000, Ann. Oper. Res..

[27]  Werner Römisch,et al.  Scenario Reduction Algorithms in Stochastic Programming , 2003, Comput. Optim. Appl..

[28]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[29]  TakritiSamer,et al.  Incorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment Problem , 2000 .

[30]  D. Bertsekas,et al.  Optimal short-term scheduling of large-scale power systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[31]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[32]  Werner Römisch,et al.  Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty , 2000, Ann. Oper. Res..

[33]  J. Dupacová,et al.  Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .

[34]  Laureano F. Escudero,et al.  Hydropower generation management under uncertainty via scenario analysis and parallel computation , 1995 .

[35]  K. Kiwiel,et al.  Power management in a hydro-thermal system under uncertainty by Lagrangian relaxation , 2002 .

[36]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[37]  A. Ruszczynski,et al.  Decision making under uncertainty : energy and power , 2002 .