Nonparametric identification of nonlinearities in block-oriented systems by orthogonal wavelets with compact support

The paper addresses the problem of identification of nonlinear characteristics in a certain class of discrete-time block-oriented systems. The systems are driven by random stationary white processes (independent and identically distributed input sequences) and disturbed by stationary, white, or colored random noise. The prior information about nonlinear characteristics is nonparametric. In order to construct identification algorithms, the orthogonal wavelets of compact support are applied, and a class of wavelet-based models is introduced and examined. It is shown that under moderate assumptions, the proposed models converge almost everywhere (in probability) to the identified nonlinear characteristics, irrespective of the noise model. The rule for optimum model-size selection is given and the asymptotic rate of convergence of the model error is established. It is demonstrated that, in some circumstances, the wavelet models are, in particular, superior to classical trigonometric and Hermite orthogonal series models worked out earlier.

[1]  Maarten Jansen,et al.  Noise Reduction by Wavelet Thresholding , 2001 .

[2]  Hai-Wen Chen,et al.  Modeling and identification of parallel nonlinear systems: structural classification and parameter estimation methods , 1995, Proc. IEEE.

[3]  Y. Kitada Identification of Nonlinear Structural Dynamic Systems Using Wavelets , 1998 .

[4]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[5]  I. Johnstone,et al.  Density estimation by wavelet thresholding , 1996 .

[6]  Hong-Ye Gao,et al.  Wavelet Shrinkage Denoising Using the Non-Negative Garrote , 1998 .

[7]  Robert Haber Nonlinear System Identification : Input-output Modeling Approach , 1999 .

[8]  W. Greblicki,et al.  Identification of discrete Hammerstein systems using kernel regression estimates , 1986 .

[9]  R. DeVore,et al.  Fast wavelet techniques for near-optimal image processing , 1992, MILCOM 92 Conference Record.

[10]  Zygmunt Hasiewicz Applicability of least-squares to the parameter estimation of large-scale no-memory linear composite systems , 1989 .

[11]  A. Krzyżak,et al.  Non-parametric identification of a memoryless system with a cascade structure , 1979 .

[12]  Daniel Coca,et al.  Non-linear system identification using wavelet multiresolution models , 2001 .

[13]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[14]  Miroslaw Pawlak,et al.  Nonparametric identification of Hammerstein systems , 1989, IEEE Trans. Inf. Theory.

[15]  Jay A. Farrell,et al.  Wavelet-based system identification for nonlinear control , 1999, IEEE Trans. Autom. Control..

[16]  W. Greblicki,et al.  Fourier and Hermite series estimates of regression functions , 1985 .

[17]  Zygmunt Hasiewicz,et al.  Non-parametric estimation of non-linearity in a cascade time-series system by multiscale approximation , 2001, Signal Process..

[18]  S. E. Kelly,et al.  Pointwise convergence of wavelet expansions , 1994, math/9401221.

[19]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[20]  Zygmunt Hasiewicz,et al.  Identification of non-linear characteristics of a class of block-oriented non-linear systems via Daubechies wavelet-based models , 2002, Int. J. Syst. Sci..

[21]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[22]  Yuhong Yang Mixing Strategies for Density Estimation , 2000 .

[23]  Zygmunt Hasiewicz,et al.  Nonlinear system identification by the Haar multiresolution analysis , 1998 .

[24]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[25]  R. Ghanem,et al.  A wavelet-based approach for model and parameter identification of non-linear systems , 2001 .

[26]  S. Mallat A wavelet tour of signal processing , 1998 .

[27]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[28]  W. Greblicki Non-parametric orthogonal series identification of Hammerstein systems , 1989 .

[29]  Jozef Vörös,et al.  Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities , 1999, IEEE Trans. Autom. Control..

[30]  M. Pawlak On the series expansion approach to the identification of Hammerstein systems , 1991 .

[31]  Georgios B. Giannakis,et al.  A bibliography on nonlinear system identification , 2001, Signal Process..

[32]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[33]  Sergio Verdu,et al.  Multiuser Detection , 1998 .