Monascus secondary metabolites: production and biological activity

[1]  A. Daugherty,et al.  Chinese red yeast rice attenuates the development of angiotensin II-induced abdominal aortic aneurysm and atherosclerosis. , 2012, The Journal of nutritional biochemistry.

[2]  Y. Hsu,et al.  Induction of Apoptosis in Human Breast Adenocarcinoma Cells MCF-7 by Monapurpyridine A, a New Azaphilone Derivative from Monascus purpureus NTU 568 , 2012, Molecules.

[3]  I. Chen,et al.  Chemical constituents from the fungus Monascus purpureus and their antifungal activity , 2011 .

[4]  Fusheng Chen,et al.  Genetic diversity analysis of Monascus strains using SRAP and ISSR markers , 2011, Mycoscience.

[5]  T. Pan,et al.  Red mold fermented products and Alzheimer's disease: a review , 2011, Applied Microbiology and Biotechnology.

[6]  I. Chen,et al.  Monasnicotinates A–D, Four New Pyridine Alkaloids from the Fungal Strain Monascus pilosus BCRC 38093 , 2011, Molecules.

[7]  Y. Lai,et al.  Effects of cyclic AMP on development and secondary metabolites of Monascus ruber M‐7 , 2011, Letters in applied microbiology.

[8]  Yunquan Zheng,et al.  Cytotoxicity of Monascus pigments and their derivatives to human cancer cells. , 2010, Journal of agricultural and food chemistry.

[9]  Y. Hsu,et al.  Monascin and ankaflavin act as novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. , 2010, Journal of agricultural and food chemistry.

[10]  Y. Hsu,et al.  Monaphilones A-C, three new antiproliferative azaphilone derivatives from Monascus purpureus NTU 568. , 2010, Journal of agricultural and food chemistry.

[11]  Yanran 李嫣 Li 然,et al.  Classification, Prediction, and Verification of the Regioselectivity of Fungal Polyketide Synthase Product Template Domains* , 2010, The Journal of Biological Chemistry.

[12]  C. K. Venil,et al.  Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. , 2010, Journal of bioscience and bioengineering.

[13]  N. Ayoub,et al.  Azaphilones: a class of fungal metabolites with diverse biological activities , 2010, Phytochemistry Reviews.

[14]  S. Morel,et al.  Isolation and structural characterization of two new metabolites from monascus. , 2010, Journal of agricultural and food chemistry.

[15]  A. Vannacci,et al.  Red yeast rice for dyslipidemia in statin-intolerant patients. , 2010, Annals of internal medicine.

[16]  K. Naidu,et al.  Safety evaluation of Monascus purpureus red mould rice in albino rats. , 2009, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[17]  D. von Stetten,et al.  The Fungal Phytochrome FphA from Aspergillus nidulans* , 2008, Journal of Biological Chemistry.

[18]  T. Pan,et al.  Safety and mutagenicity evaluation of nanoparticulate red mold rice. , 2008, Journal of agricultural and food chemistry.

[19]  C. Tseng,et al.  Exploring the distribution of citrinin biosynthesis related genes among Monascus species. , 2008, Journal of agricultural and food chemistry.

[20]  T. Viruthagiri,et al.  Microbial Production and Biomedical Applications of Lovastatin , 2008, Indian journal of pharmaceutical sciences.

[21]  R. Pinthong,et al.  Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp. , 2008, International journal of food microbiology.

[22]  J. R. Hanson,et al.  The Chemistry of Fungi , 2008 .

[23]  C. Tseng,et al.  Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. , 2008, Journal of agricultural and food chemistry.

[24]  C. Soccol,et al.  Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid-state fermentation , 2008 .

[25]  T. Miyake,et al.  Analysis of Pigment Compositions in Various Monascus Cultures , 2008 .

[26]  Hubertus Haas,et al.  Functional and Physical Interaction of Blue- and Red-Light Sensors in Aspergillus nidulans , 2008, Current Biology.

[27]  B. V. Kilikian,et al.  Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802 , 2008 .

[28]  Yang Xu,et al.  Two new Monascus metabolites with strong blue fluorescence isolated from red yeast rice. , 2008, Journal of agricultural and food chemistry.

[29]  Nan-Wei Su,et al.  Biologically active components and nutraceuticals in the Monascus-fermented rice: a review , 2008, Applied Microbiology and Biotechnology.

[30]  T. Pan,et al.  A simple and rapid approach for removing citrinin while retaining monacolin K in red mold rice. , 2007, Journal of agricultural and food chemistry.

[31]  G. Fu,et al.  Construction of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin biosynthesis in Monascus aurantiacus and maintain food red pigment production. , 2007, Asia Pacific journal of clinical nutrition.

[32]  G. Ji,et al.  Natural Occuring Levels of Citrinin and Monacolin K in Korean Monascus Fermentation Products , 2007 .

[33]  Ashok Pandey,et al.  Sjeme biljke Artocarpus heterophyllus (Jackfruit) – novi čvrsti supstrat za proizvodnju pigmenata uzgojem gljive Monascus , 2006 .

[34]  T. Pan,et al.  Production of red mold rice using a modified Nagata type koji maker , 2006, Applied Microbiology and Biotechnology.

[35]  C. Hertweck,et al.  Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. , 2006, Journal of biotechnology.

[36]  T. Miyake,et al.  Repression of Secondary Metabolite Production by Exogenous cAMP in Monascus , 2006, Bioscience, biotechnology, and biochemistry.

[37]  T. Miyake,et al.  Effects of the Principal Nutrients on Lovastatin Production by Monascus pilosus , 2006, Bioscience, biotechnology, and biochemistry.

[38]  Jae-Hyuk Yu Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. , 2006, Journal of microbiology.

[39]  H. Humpf,et al.  Cytotoxic and antimitotic effects of N-containing Monascus metabolites studied using immortalized human kidney epithelial cells. , 2006, Molecular nutrition & food research.

[40]  J. Martín,et al.  Characterization of an hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures , 2006, Applied Microbiology and Biotechnology.

[41]  T. Pan,et al.  Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent—monacolin K and antiinflammation agent—monascin , 2006, Applied Microbiology and Biotechnology.

[42]  Bianchi Antonio Extracts of monascusus purpureus beyond statins —Profile of efficacy and safety of the use of extracts of monascus purpureus , 2005 .

[43]  T. Miyake,et al.  Light effects on cell development and secondary metabolism in Monascus , 2005, Journal of Industrial Microbiology and Biotechnology.

[44]  Baojun Xu,et al.  Enhanced lovastatin production by solid state fermentation ofMonascus ruber , 2005 .

[45]  Takashi Suzuki,et al.  Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. , 2005, Journal of agricultural and food chemistry.

[46]  Zheng-Tao Wang,et al.  Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry. , 2004, Journal of pharmaceutical and biomedical analysis.

[47]  P. Kittakoop,et al.  Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. , 2004, Phytochemistry.

[48]  A. Endo The origin of the statins , 2004 .

[49]  T. Pan,et al.  Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601 , 2003, Journal of Industrial Microbiology and Biotechnology.

[50]  C. Schwerdtfeger,et al.  VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation , 2003, The EMBO journal.

[51]  H. Humpf,et al.  New monascus metabolites with a pyridine structure in red fermented rice. , 2003, Journal of agricultural and food chemistry.

[52]  C. Shin,et al.  Color characteristics of monascus pigments derived by fermentation with various amino acids. , 2003, Journal of agricultural and food chemistry.

[53]  A. M. Calvo,et al.  Relationship between Secondary Metabolism and Fungal Development , 2002, Microbiology and Molecular Biology Reviews.

[54]  H. Linden,et al.  A White Collar Protein Senses Blue Light , 2002, Science.

[55]  M. Manzoni,et al.  Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs , 2002, Applied Microbiology and Biotechnology.

[56]  J. Bauer,et al.  Metabolites of Monascus ruber in silages. , 2001, Journal of animal physiology and animal nutrition.

[57]  Carl A. Batt,et al.  Encyclopedia of Food Microbiology , 2000 .

[58]  G. Goma,et al.  Medium-Chain Fatty Acids Affect Citrinin Production in the Filamentous Fungus Monascus ruber , 2000, Applied and Environmental Microbiology.

[59]  M. Sabater-Vilar,et al.  Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. , 1999, Mutation research.

[60]  R. Elashoff,et al.  Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice dietary supplement. , 1999, The American journal of clinical nutrition.

[61]  L. Martínková,et al.  Biological activity of polyketide pigments produced by the fungus Monascus , 1995 .

[62]  G Goma,et al.  Characterization of monascidin A from Monascus as citrinin. , 1995, International journal of food microbiology.

[63]  A. Demain,et al.  Negative effect of ammonium nitrate as nitrogen source on the production of water-soluble red pigments by Monascus sp. , 1995, Applied Microbiology and Biotechnology.

[64]  Petr Jůlová,et al.  Ethanol as substrate for pigment production by the fungus Monascus purpureus , 1994 .

[65]  A. Demain,et al.  Leucine interference in the production of water-soluble red Monascus pigments , 1994, Archives of Microbiology.

[66]  M. Johns,et al.  Effect of carbon source on ethanol and pigment production by Monascus purpureus , 1994 .

[67]  A. Demain,et al.  Resting cell studies on formation of water-soluble red pigments byMonascus sp. , 1993, Journal of Industrial Microbiology.

[68]  A. Demain,et al.  Formation of water-solubleMonascus red pigments by biological and semi-synthetic processes , 1992, Journal of Industrial Microbiology.

[69]  A. Demain,et al.  Effect of nutrition of Monascus sp. on formation of red pigments , 1991, Applied Microbiology and Biotechnology.

[70]  H. Nozaki,et al.  Ankalactone, a new α,β-unsaturated γ-lactone from Monascus anka , 1991 .

[71]  J. Pitt,et al.  Fungi and Food Spoilage , 1987 .

[72]  H. Wong,et al.  ULTRASTRUCTURE OF SEXUAL REPRODUCTION OF MONASCUS PURPUREUS , 1986 .

[73]  D. Hawksworth,et al.  Biochemical tests as an aid to the identification of Monascus species , 1985 .

[74]  H. Wong,et al.  Production and Isolation of an Antibiotic from Monascus purpureus and its Relationship to Pigment Production , 1981 .

[75]  H. Wong,et al.  Pigmentation and Antibacterial Activity of Fast Neutron- and X-Ray-induced Strains of Monascus purpureus Went. , 1977, Plant physiology.

[76]  D. Shepherd,et al.  The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture. , 1977, Canadian journal of microbiology.

[77]  D. Shepherd,et al.  Sexal reproductive cycle of Monascus in submerged shaken culture , 1975, Journal of bacteriology.

[78]  W. Whalley,et al.  Isolation and structure of ankaflavin: A new pigment from Monascus anka , 1973 .

[79]  G. Mukherjee,et al.  Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation , 2011 .

[80]  C. Sung,et al.  Elimination of the mycotoxin citrinin production in the industrial important strain Monascus purpureus SM001. , 2010, Metabolic engineering.

[81]  C. Soccol,et al.  Jackfruit Seed - A Novel Substrate for the Production of Monascus Pigments through Solid-State Fermentation , 2006 .

[82]  A. Bianchi Extracts of Monascusus purpureus beyond statins--profile of efficacy and safety of the use of extracts of Monascus purpureus. , 2005, Chinese journal of integrative medicine.

[83]  T. Pan,et al.  Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus , 2003, Journal of Industrial Microbiology and Biotechnology.

[84]  R. Mazumder,et al.  ANTIMICROBIAL ACTIVITY OF THE MYCOTOXIN CITRININ OBTAINED FROM THE FUNGUS PENICILLIUM CITRINUM , 2002, Ancient science of life.

[85]  V. Havlíček,et al.  Biological activities of oligoketide pigments of Monascus purpureus. , 1999, Food additives and contaminants.

[86]  W. Yongmanitchai,et al.  Culture conditions for yellow pigment formation byMonascus sp. KB 10 grown on cassava medium , 1993, World journal of microbiology & biotechnology.

[87]  H. Noguchi,et al.  Novel Natural Colorants from Monascus anka U-1 , 1992 .

[88]  J. Meyrath,et al.  Biotechnology and fungal differentiation , 1977 .

[89]  W. Whalley,et al.  The chemistry of fungi. LXIV. The structure of monascin: the relative stereochemistry of the azaphilones. , 1971, Journal of the Chemical Society. Perkin transactions 1.

[90]  W. Whalley,et al.  The structure of monascin , 1969 .

[91]  J. Hadfield,et al.  The biosynthesis of fungal metabolites. Part II. The β-oxo-lactone equivalents in rubropunctatin and monascorubrin , 1967 .

[92]  W. Whalley CHAPTER 18 – THE BIOSYNTHESIS OF FUNGAL METABOLITES† , 1963 .

[93]  K. Nakanishi,et al.  Structure of monascorubrin. , 1962 .

[94]  B. Fielding,et al.  898. The chemistry of fungi. Part XXXIX. The structure of monascin , 1961 .

[95]  J. S. Holker,et al.  722. The chemistry of fungi. Part XXXVII. The structure of rubropunctatin , 1959 .

[96]  V. Kfen Secondary metabolites of the fungus Monascus: a review , 2022 .