New insights into Approximate Bayesian Computation
暂无分享,去创建一个
[1] M. Blum. Approximate Bayesian Computation: A Nonparametric Perspective , 2009, 0904.0635.
[2] J. Koláček,et al. Nonparametric Conditional Density Estimation , 2013 .
[3] Christian P Robert,et al. Lack of confidence in approximate Bayesian computation model choice , 2011, Proceedings of the National Academy of Sciences.
[4] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[5] P. Donnelly,et al. Inferring coalescence times from DNA sequence data. , 1997, Genetics.
[6] D. Rubin. Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .
[7] Olivier P. Faugeras,et al. A quantile-copula approach to conditional density estimation , 2007, J. Multivar. Anal..
[8] G. S. Watson,et al. Smooth regression analysis , 1964 .
[9] Arnaud Guyader,et al. Nearest neighbor classification in infinite dimension , 2006 .
[10] Rob J. Hyndman,et al. Bandwidth selection for kernel conditional density estimation , 2001 .
[11] Thomas M. Cover,et al. Estimation by the nearest neighbor rule , 1968, IEEE Trans. Inf. Theory.
[12] László Györfi,et al. Nonparametric Estimation of Conditional Distributions , 2007, IEEE Transactions on Information Theory.
[13] E. Nadaraya. On Estimating Regression , 1964 .
[14] W. Li,et al. Estimating the age of the common ancestor of a sample of DNA sequences. , 1997, Molecular biology and evolution.
[15] Jianqing Fan,et al. A crossvalidation method for estimating conditional densities , 2004 .
[16] Jeffrey S. Racine,et al. Cross-Validation and the Estimation of Conditional Probability Densities , 2004 .
[17] R. Wilkinson. Approximate Bayesian computation (ABC) gives exact results under the assumption of model error , 2008, Statistical applications in genetics and molecular biology.
[18] Paul Marjoram,et al. Statistical Applications in Genetics and Molecular Biology Approximately Sufficient Statistics and Bayesian Computation , 2011 .
[19] J. Yackel,et al. Large Sample Properties of Nearest Neighbor Density Function Estimators , 1977 .
[20] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[21] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[22] D. Balding,et al. Approximate Bayesian computation in population genetics. , 2002, Genetics.
[23] R. Fefferman. Review: Miguel de Guzmán, Differentiation of integrals in $R^n$ , 1977 .
[24] Adam Krzyzak,et al. New Multivariate Product Density Estimators , 2002 .
[25] A. Zygmund,et al. Measure and integral : an introduction to real analysis , 1977 .
[26] L. Breiman,et al. Variable Kernel Estimates of Multivariate Densities , 1977 .
[27] J. Yackel,et al. Consistency Properties of Nearest Neighbor Density Function Estimators , 1977 .
[28] C. J. Stone,et al. Consistent Nonparametric Regression , 1977 .
[29] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[30] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[31] Rolf-Dieter Reiss,et al. On conditional distributions of nearest neighbors , 1992 .
[32] J. L. Hodges,et al. Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .
[33] T. Broadbent. Measure and Integral , 1957, Nature.
[34] M. C. Jones. Variable kernel density estimates and variable kernel density estimates , 1990 .
[35] R. Jackson. Inequalities , 2007, Algebra for Parents.
[36] M. Feldman,et al. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.
[37] Ian Abramson. On Bandwidth Variation in Kernel Estimates-A Square Root Law , 1982 .
[38] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[39] Rob J Hyndman,et al. Estimating and Visualizing Conditional Densities , 1996 .
[40] Antoni Zygmund,et al. Note on the differentiability of multiple integrals , 1934 .
[41] Jean-Michel Marin,et al. Bayesian Core: A Practical Approach to Computational Bayesian Statistics , 2010 .
[42] Paul Fearnhead,et al. Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .
[43] M. Rosenblatt,et al. Multivariate k-nearest neighbor density estimates , 1979 .
[44] Mark M. Tanaka,et al. Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.
[45] L. Devroye. Necessary and sufficient conditions for the pointwise convergence of nearest neighbor regression function estimates , 1982 .
[46] C. Quesenberry,et al. A nonparametric estimate of a multivariate density function , 1965 .
[47] Arnaud Guyader,et al. On the Rate of Convergence of the Bagged Nearest Neighbor Estimate , 2010, J. Mach. Learn. Res..
[48] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[49] W. Marsden. I and J , 2012 .
[50] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[51] P. Heywood. Trigonometric Series , 1968, Nature.
[52] J.-M. Marin,et al. Relevant statistics for Bayesian model choice , 2011, 1110.4700.
[53] Jean-Michel Marin,et al. Approximate Bayesian computational methods , 2011, Statistics and Computing.
[54] E. Nadaraya. On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .
[55] James Stephen Marron,et al. Variable window width kernel estimates of probability densities , 1992 .