A model for calculating secondary and backscattered electron yields

Images in the scanning electron microscope (SEM) are formed from both low‐energy secondary, and high‐energy backscattered, electrons. The quantitative interpretation of SEM images therefore requires a model which can predict the magnitude of both of these signal components for a specimen whose geometry and chemistry is known. It is shown that the combination of a simple electron diffusion model with a Monte Carlo trajectory simulation allows both yields to be calculated, simultaneously, with good accuracy. Data, such as the magnitude and energy of the maximum secondary yield, the secondary variation with tilt, and the contribution of backscattered electrons to the secondary yield coefficient, computed from this model are in excellent agreement with experimental data.

[1]  E. Tamura On the Theory of Secondary Electron Emission , 1985 .

[2]  W. Czaja Response of Si and GaP p‐n Junctions to a 5‐ to 40‐keV Electron Beam , 1966 .

[3]  H. Streitwolf Zur Theorie der Sekundrelektronenemission von Metallen Der Anregungsproze , 1959 .

[4]  K. C. Smith,et al.  Resolution limits in the surface scanning electron microscope , 1973 .

[5]  S. Rodda Secondary Electron Emission , 1955, Nature.

[6]  H. Seiler Einige aktuelle Probleme der Sekundarelektron-emission , 1967 .

[7]  W. Williamson,et al.  Electron backscattering from bulk materials , 1985 .

[8]  D. Joy Resolution in low voltage scanning electron microscopy , 1985 .

[9]  J. Pendry,et al.  Theory of secondary electron emission , 1978 .

[10]  C. Powell Attenuation lengths of low-energy electrons in solids , 1974 .

[11]  T. Everhart,et al.  Simple calculation of energy distribution of low‐energy secondary electrons emitted from metals under electron bombardment , 1974 .

[12]  David B. Wittry,et al.  X-ray continuum from thick elemental targets for 10-50-keV electrons , 1974 .

[13]  D. Joy Beam interactions, contrast and resolution in the SEM , 1984 .

[14]  R. Shimizu,et al.  A Monte Carlo calculation of low-energy secondary electron emission from metals , 1974 .

[15]  Ryuichi Shimizu,et al.  Secondary electron yield with primary electron beam of kilo‐electron‐volts , 1974 .

[16]  P. R. Barker,et al.  Secondary electron emission in the scanning electron microscope , 1978 .

[17]  J. Young,et al.  Dissipation of Energy by 2.5–10 kev Electrons in Al2O3 , 1957 .

[18]  H. Seiler,et al.  Secondary electron emission in the scanning electron microscope , 1983 .

[19]  U. Fano,et al.  Energy Spectrum Resulting from Electron Slowing Down , 1954 .

[20]  H. Kanter CONTRIBUTION OF BACKSCATTERED ELECTRONS TO SECONDARY ELECTRON FORMATION , 1961 .

[21]  A. Dekker,et al.  Secondary Electron Emission , 1981 .

[22]  D. Kyser,et al.  Cathodoluminescence at p‐n Junctions in GaAs , 1965 .

[23]  T. Komoda,et al.  Observation for Crystal Surface of W Field Emitter Tip by SEM , 1985 .

[24]  M. C. Cox,et al.  A simple Monte Carlo method for simulating electron-solid interactions and its application to electron probe microanalysis , 1977 .