On the Complexity of Computing Critical Points with Gröbner Bases

Computing the critical points of a polynomial function $q\in\mathbb{Q}[X_1,\ldots,X_n]$ restricted to the vanishing locus $V\subset\mathbb{R}^n$ of polynomials $f_1,\ldots, f_p\in\mathbb{Q}[X_1,\ldots, X_n]$ is of first importance in several applications in optimization and in real algebraic geometry. These points are solutions of a highly structured system of multivariate polynomial equations involving maximal minors of a Jacobian matrix. We investigate the complexity of solving this problem by using Grobner basis algorithms under genericity assumptions on the coefficients of the input polynomials. The main results refine known complexity bounds (which depend on the maximum $D=\max(\deg(f_1),\ldots,\deg(f_p),\deg(q))$) to bounds which depend on the list $(\deg(f_1),\ldots,\deg(f_p),\deg(q))$: we prove that the Grobner basis computation can be performed in $\delta^{O(\log(A)/\log(G))}$ arithmetic operations in $\mathbb{Q}$, where $\delta$ is the algebraic degree of the ideal vanishing on the critical poin...

[1]  Jean-Charles Faugère,et al.  On the complexity of the generalized MinRank problem , 2011, J. Symb. Comput..

[2]  J. Faugère,et al.  On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations , 2004 .

[3]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[4]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[5]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[6]  L. Pachter,et al.  Algebraic Statistics for Computational Biology: Preface , 2005 .

[7]  Marc Giusti,et al.  Generalized polar varieties: geometry and algorithms , 2005, J. Complex..

[8]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[9]  Éric Schost,et al.  On the geometry of polar varieties , 2009, Applicable Algebra in Engineering, Communication and Computing.

[10]  Marc Giusti,et al.  Intrinsic complexity estimates in polynomial optimization , 2013, J. Complex..

[11]  B. Bank,et al.  Polar Varieties and Efficient Real Equation Solving: The Hypersurface Case , 1996 .

[12]  Bernd Sturmfels,et al.  Solving the Likelihood Equations , 2005, Found. Comput. Math..

[13]  Jean-Charles Faugère,et al.  On the complexity of solving quadratic Boolean systems , 2011, J. Complex..

[14]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[15]  Dima Grigoriev,et al.  Polynomial-time computing over quadratic maps i: sampling in real algebraic sets , 2004, computational complexity.

[16]  D. Eisenbud The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry , 2004 .

[17]  Alexander I. Barvinok Feasibility testing for systems of real quadratic equations , 1993, Discret. Comput. Geom..

[18]  A. Storjohann Algorithms for matrix canonical forms , 2000 .

[19]  Adi Shamir,et al.  Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization , 1999, CRYPTO.

[20]  S. Basu,et al.  A New Algorithm to Find a Point in Every Cell Defined by a Family of Polynomials , 1998 .

[21]  A Dimitri Fotiadi,et al.  Varietes polaires locales et classes de Chern des varietes singulieres , 1981 .

[22]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[23]  Elisa Gorla,et al.  Hilbert functions of irreducible arithmetically Gorenstein schemes , 2003 .

[24]  Rekha R. Thomas,et al.  The Euclidean Distance Degree of an Algebraic Variety , 2013, Foundations of Computational Mathematics.

[25]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[26]  Jean-Charles Faugère,et al.  Critical points and Gröbner bases: the unmixed case , 2012, ISSAC.

[27]  Jean-Charles Faugère,et al.  Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology , 2010, ISSAC.

[28]  Bruno Buchberger,et al.  Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..

[29]  Jiawang Nie,et al.  Algebraic Degree of Polynomial Optimization , 2008, SIAM J. Optim..

[30]  Mohab Safey El Din,et al.  Strong bi-homogeneous Bézout theorem and its use in effective real algebraic geometry , 2006, ArXiv.

[31]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[32]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[33]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[34]  Ludovic Perret,et al.  Cryptanalysis of MinRank , 2008, CRYPTO.

[35]  T. G. Room The Geometry of Determinantal Loci , 1938 .

[36]  Bernd Sturmfels,et al.  The maximum likelihood degree , 2004, math/0406533.

[37]  Marc Giusti,et al.  Generalized polar varieties and an efficient real elimination , 2004, Kybernetika.

[38]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[39]  임종인,et al.  Gröbner Bases와 응용 , 1995 .

[40]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[41]  J. Eagon,et al.  Ideals defined by matrices and a certain complex associated with them , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  Ezra Miller,et al.  Gröbner geometry of Schubert polynomials , 2001 .

[43]  B. Bank,et al.  Polar varieties and efficient real elimination , 2000 .

[44]  Marc Giusti,et al.  Bipolar varieties and real solving of a singular polynomial equation , 2010 .