Image-based model of the spectrin cytoskeleton for red blood cell simulation

We simulate deformable red blood cells in the microcirculation using the immersed boundary method with a cytoskeletal model that incorporates structural details revealed by tomographic images. The elasticity of red blood cells is known to be supplied by both their lipid bilayer membranes, which resist bending and local changes in area, and their cytoskeletons, which resist in-plane shear. The cytoskeleton consists of spectrin tetramers that are tethered to the lipid bilayer by ankyrin and by actin-based junctional complexes. We model the cytoskeleton as a random geometric graph, with nodes corresponding to junctional complexes and with edges corresponding to spectrin tetramers such that the edge lengths are given by the end-to-end distances between nodes. The statistical properties of this graph are based on distributions gathered from three-dimensional tomographic images of the cytoskeleton by a segmentation algorithm. We show that the elastic response of our model cytoskeleton, in which the spectrin polymers are treated as entropic springs, is in good agreement with the experimentally measured shear modulus. By simulating red blood cells in flow with the immersed boundary method, we compare this discrete cytoskeletal model to an existing continuum model and predict the extent to which dynamic spectrin network connectivity can protect against failure in the case of a red cell subjected to an applied strain. The methods presented here could form the basis of disease- and patient-specific computational studies of hereditary diseases affecting the red cell cytoskeleton.

[1]  Esther Bullitt,et al.  The Physiological Molecular Shape of Spectrin: A Compact Supercoil Resembling a Chinese Finger Trap , 2015, PLoS Comput. Biol..

[2]  Sookkyung Lim,et al.  Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Yi Sui,et al.  Dynamic motion of red blood cells in simple shear flow , 2008 .

[4]  Evan Evans,et al.  Mechanics and Thermodynamics of Biomembranes , 2017 .

[5]  Paul J. Atzberger,et al.  A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales , 2007, J. Comput. Phys..

[6]  D. Boal,et al.  Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. , 1998, Biophysical journal.

[7]  A. Cumano,et al.  Forced Unfolding of Proteins Within Cells , 2007 .

[8]  L. D. Da Costa,et al.  Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. , 2013, Blood reviews.

[9]  S. Suresh,et al.  Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. , 2005, Biophysical journal.

[10]  Charles S. Peskin,et al.  Shared-Memory Parallel Vector Implementation of the Immersed Boundary Method for the Computation of Blood Flow in the Beating Mammalian Heart , 2004, The Journal of Supercomputing.

[11]  Subra Suresh,et al.  Cytoskeletal dynamics of human erythrocyte , 2007, Proceedings of the National Academy of Sciences.

[12]  Niels Voigt,et al.  Dysfunction in the &bgr;II Spectrin–Dependent Cytoskeleton Underlies Human Arrhythmia , 2015, Circulation.

[13]  S. Suresha,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[14]  W. M. S T E I N,et al.  An algorithm for extracting the network geometry of three-dimensional collagen gels , 2007 .

[15]  Subra Suresh,et al.  Multiscale Modeling of Red Blood Cell Mechanics and Blood Flow in Malaria , 2011, PLoS Comput. Biol..

[16]  D. Boal,et al.  Computer simulation of a model network for the erythrocyte cytoskeleton. , 1994, Biophysical journal.

[17]  Nir S Gov,et al.  Active elastic network: cytoskeleton of the red blood cell. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Yang Liu,et al.  Properties of Discrete Delta Functions and Local Convergence of the Immersed Boundary Method , 2012, SIAM J. Numer. Anal..

[19]  M. Saxton,et al.  The membrane skeleton of erythrocytes. A percolation model. , 1990, Biophysical journal.

[20]  Charles S. Peskin,et al.  2-D Parachute Simulation by the Immersed Boundary Method , 2006, SIAM J. Sci. Comput..

[21]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[22]  D. Boal,et al.  Mechanics of the cell , 2001 .

[23]  Serge Beucher,et al.  Use of watersheds in contour detection , 1979 .

[24]  N. Burton,et al.  Modelling the structure of the red cell membrane. , 2011, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[25]  L L van Deenen,et al.  The properties of polyunsaturated lecithins in monolayers and liposomes and the interactions of these lecithins with cholesterol. , 1972, Biochimica et biophysica acta.

[26]  L. Fauci,et al.  A computational model of ameboid deformation and locomotion , 1998, European Biophysics Journal.

[27]  Andreas Plückthun,et al.  Stepwise unfolding of ankyrin repeats in a single protein revealed by atomic force microscopy. , 2006, Biophysical journal.

[28]  Russell Schwartz,et al.  Biological Modeling and Simulation: A Survey of Practical Models, Algorithms, and Numerical Methods , 2008 .

[29]  Gianluca Marcelli,et al.  Thermal fluctuations of red blood cell membrane via a constant-area particle-dynamics model. , 2005, Biophysical journal.

[30]  Philip S Low,et al.  Imaging of the diffusion of single band 3 molecules on normal and mutant erythrocytes. , 2009, Blood.

[31]  E. Ungewickell,et al.  Self-association of human spectrin. A thermodynamic and kinetic study. , 1978, European journal of biochemistry.

[32]  M. Rief,et al.  Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. , 1999, Journal of molecular biology.

[33]  David L Stokes,et al.  Native ultrastructure of the red cell cytoskeleton by cryo-electron tomography. , 2011, Biophysical journal.

[34]  E. Evans,et al.  Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. , 1994, Annual review of biophysics and biomolecular structure.

[35]  J. Hansen,et al.  Basic Concepts for Simple and Complex Liquids , 2003 .

[36]  B. Thompson,et al.  The Spectrin cytoskeleton regulates the Hippo signalling pathway , 2015, The EMBO journal.

[37]  Subra Suresh,et al.  Biomechanics of red blood cells in human spleen and consequences for physiology and disease , 2016, Proceedings of the National Academy of Sciences.

[38]  Thomas M Fischer,et al.  Shape memory of human red blood cells. , 2004, Biophysical journal.

[39]  E. Evans,et al.  Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. , 1994, Science.

[40]  G E Karniadakis,et al.  Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation , 2010, Proceedings of the National Academy of Sciences.

[41]  F. John,et al.  Stretching DNA , 2022 .

[42]  Marc Thellier,et al.  The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. , 2011, Blood.

[43]  He Li,et al.  Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. , 2014, Biophysical journal.

[44]  Katarzyna A. Rejniak,et al.  Investigating dynamical deformations of tumor cells in circulation: predictions from a theoretical model , 2012, Front. Oncol..

[45]  Boyce E. Griffith,et al.  Immersed Boundary Method for Variable Viscosity and Variable Density Problems Using Fast Constant-Coefficient Linear Solvers I: Numerical Method and Results , 2013, SIAM J. Sci. Comput..

[46]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[47]  J. Wade,et al.  Ultrastructure and immunocytochemistry of the isolated human erythrocyte membrane skeleton. , 1993, Cell motility and the cytoskeleton.

[48]  Thomas M Fischer,et al.  Creep and stress relaxation of human red cell membrane , 2017, Biomechanics and modeling in mechanobiology.

[49]  Dennis E Discher,et al.  Cooperativity in forced unfolding of tandem spectrin repeats. , 2003, Biophysical journal.

[50]  George Em Karniadakis,et al.  Accurate coarse-grained modeling of red blood cells. , 2008, Physical review letters.

[51]  X. Zhuang,et al.  Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons , 2013, Science.

[52]  Wesley R. Legant,et al.  Physically-Induced Cytoskeleton Remodeling of Cells in Three-Dimensional Culture , 2012, PloS one.

[53]  D. Boal Mechanics of the Cell: Membranes , 2012 .

[54]  Sangeeta N Bhatia,et al.  A Biophysical Indicator of Vaso-occlusive Risk in Sickle Cell Disease , 2022 .

[55]  Thomas M Fischer,et al.  Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium. , 2007, Biophysical journal.

[56]  M. Kikkawa,et al.  Novel structural labeling method using cryo-electron tomography and biotin-streptavidin system. , 2013, Journal of structural biology.

[57]  Paul J. Atzberger,et al.  Simulation of Osmotic Swelling by the Stochastic Immersed Boundary Method , 2015, SIAM J. Sci. Comput..

[58]  Sang Jin Lee,et al.  Loss of β2-spectrin prevents cardiomyocyte differentiation and heart development. , 2014, Cardiovascular research.

[59]  Ricardo Cortez,et al.  Modeling viscoelastic networks in Stokes flow , 2014 .

[60]  N. Mohandas,et al.  Mammalian alpha I-spectrin is a neofunctionalized polypeptide adapted to small highly deformable erythrocytes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S Chien,et al.  Influence of network topology on the elasticity of the red blood cell membrane skeleton. , 1997, Biophysical journal.

[62]  Prosenjit Bagchi,et al.  Tank-treading and tumbling frequencies of capsules and red blood cells. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  N. Mohandas,et al.  Shear-Response of the Spectrin Dimer-Tetramer Equilibrium in the Red Blood Cell Membrane* , 2002, The Journal of Biological Chemistry.

[64]  Davide Magatti,et al.  Modeling of fibrin gels based on confocal microscopy and light-scattering data. , 2013, Biophysical journal.

[65]  Carl Ollivier-Gooch,et al.  A computational study of the effect of unstructured mesh quality on solution efficiency , 1997 .

[66]  Subra Suresh,et al.  Lipid bilayer and cytoskeletal interactions in a red blood cell , 2013, Proceedings of the National Academy of Sciences.

[67]  R. Skalak,et al.  Motion of a tank-treading ellipsoidal particle in a shear flow , 1982, Journal of Fluid Mechanics.

[68]  L. Fauci,et al.  Coupling biochemistry and hydrodynamics captures hyperactivated sperm motility in a simple flagellar model. , 2011, Journal of theoretical biology.

[69]  Chwee Teck Lim,et al.  Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. , 2005, Acta biomaterialia.

[70]  George Lykotrafitis,et al.  Modeling of band-3 protein diffusion in the normal and defective red blood cell membrane. , 2016, Soft matter.

[71]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[72]  Leann Tilley,et al.  Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite , 2015, Proceedings of the National Academy of Sciences.

[73]  A. Popel,et al.  Large deformation of red blood cell ghosts in a simple shear flow. , 1998, Physics of fluids.

[74]  R. Waugh,et al.  Elastic area compressibility modulus of red cell membrane. , 1976, Biophysical journal.

[75]  David A. Weitz,et al.  The micromechanics of three-dimensional collagen-I gels , 2008, Complex..

[76]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[77]  G. Wright,et al.  Flow-induced channel formation in the cytoplasm of motile cells. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  D. Bottino,et al.  Modeling Viscoelastic Networks and Cell Deformation in the Context of the Immersed Boundary Method , 1998 .

[79]  Martin Baumann,et al.  Cell ageing for 1 day alters both membrane elasticity and viscosity , 2003, Pflügers Archiv.

[80]  Subra Suresh,et al.  Molecularly based analysis of deformation of spectrin network and human erythrocyte , 2006 .