Opposing USP19 splice variants in TGF-β signaling and TGF-β-induced epithelial–mesenchymal transition of breast cancer cells

[1]  J. Espinosa,et al.  USP19 modulates cancer cell migration and invasion and acts as a novel prognostic marker in patients with early breast cancer , 2021, Oncogenesis.

[2]  Jing Zhang,et al.  Studying TGF-β Signaling and TGF-β-induced Epithelial-to-mesenchymal Transition in Breast Cancer Cells. , 2020, Journal of visualized experiments : JoVE.

[3]  Sangeeta Kumari,et al.  Live-cell imaging and analysis reveal cell phenotypic transition dynamics inherently missing in snapshot data , 2020, Science Advances.

[4]  Shuai Guo,et al.  USP19 Enhances MMP2/MMP9-Mediated Tumorigenesis in Gastric Cancer , 2020, OncoTargets and therapy.

[5]  Raymond B. Runyan,et al.  Guidelines and definitions for research on epithelial–mesenchymal transition , 2020, Nature Reviews Molecular Cell Biology.

[6]  Guanglin Zhang,et al.  Ubiquitin specific peptidase 19 is a prognostic biomarker and affect the proliferation and migration of clear cell renal cell carcinoma , 2020, Oncology reports.

[7]  Sylvia E. Le Dévédec,et al.  Deubiquitinase Activity Profiling Identifies UCHL1 as a Candidate Oncoprotein That Promotes TGFβ-Induced Breast Cancer Metastasis , 2019, Clinical Cancer Research.

[8]  Margaret A. Goralski,et al.  Aryl Sulfonamides Degrade RBM39 and RBM23 by Recruitment to CRL4-DCAF15. , 2019, Cell reports.

[9]  Lunxu Liu,et al.  Prognostic value of TGF-β in lung cancer: systematic review and meta-analysis , 2019, BMC Cancer.

[10]  Lunxu Liu,et al.  Prognostic value of TGF-β in lung cancer: systematic review and meta-analysis , 2019, BMC Cancer.

[11]  P. ten Dijke,et al.  TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis , 2019, International journal of molecular sciences.

[12]  R. Weinberg,et al.  EMT and Cancer: More Than Meets the Eye. , 2019, Developmental cell.

[13]  Sarah V. Gerhart,et al.  Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing , 2018, Scientific Reports.

[14]  Xingyue He,et al.  Anti‐tumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC‐dependent vulnerability , 2018, EMBO molecular medicine.

[15]  C. Chen,et al.  The biology and role of CD44 in cancer progression: therapeutic implications , 2018, Journal of Hematology & Oncology.

[16]  Kris Zimmerman,et al.  CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide. , 2017, ACS chemical biology.

[17]  C. Cui,et al.  Invasive Behavior of Human Breast Cancer Cells in Embryonic Zebrafish. , 2017, Journal of visualized experiments : JoVE.

[18]  P. ten Dijke,et al.  Targeting TGF-β Signaling in Cancer. , 2017, Trends in cancer.

[19]  L. Abrami,et al.  Ubiquitin-dependent folding of the Wnt signaling coreceptor LRP6 , 2016, eLife.

[20]  S. Wing Deubiquitinating enzymes in skeletal muscle atrophy-An essential role for USP19. , 2016, The international journal of biochemistry & cell biology.

[21]  Omar Abdel-Wahab,et al.  Therapeutic targeting of splicing in cancer , 2016, Nature Medicine.

[22]  H. van Dam,et al.  Regulation of the TGF-β pathway by deubiquitinases in cancer. , 2016, The international journal of biochemistry & cell biology.

[23]  Y. Ye,et al.  Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells , 2016, Nature Cell Biology.

[24]  F. G. van der Goot,et al.  Cytoplasmic Ubiquitin-Specific Protease 19 (USP19) Modulates Aggregation of Polyglutamine-Expanded Ataxin-3 and Huntingtin through the HSP90 Chaperone , 2016, PloS one.

[25]  Jian Xu,et al.  Regulation of TGF-β Receptors. , 2016, Methods in molecular biology.

[26]  J. Seoane,et al.  USP15 regulates SMURF2 kinetics through C-lobe mediated deubiquitination , 2015, Scientific Reports.

[27]  G. Barrière,et al.  Epithelial Mesenchymal Transition: a double-edged sword , 2015, Clinical and Translational Medicine.

[28]  S. Wing,et al.  USP19 deubiquitinating enzyme inhibits muscle cell differentiation by suppressing unfolded-protein response signaling , 2015, Molecular biology of the cell.

[29]  S. Dewhurst,et al.  Pharmacologic Inhibition of MLK3 Kinase Activity Blocks the In Vitro Migratory Capacity of Breast Cancer Cells but Has No Effect on Breast Cancer Brain Metastasis in a Mouse Xenograft Model , 2014, PloS one.

[30]  Samy Lamouille,et al.  Molecular mechanisms of epithelial–mesenchymal transition , 2014, Nature Reviews Molecular Cell Biology.

[31]  S. Gygi,et al.  Characterization of the Deubiquitinating Activity of USP19 and Its Role in Endoplasmic Reticulum-associated Degradation* , 2013, The Journal of Biological Chemistry.

[32]  Qi Liu,et al.  Gene and isoform expression signatures associated with tumor stage in kidney renal clear cell carcinoma , 2013, BMC Systems Biology.

[33]  Sanjeeb Kumar Sahu,et al.  Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery , 2013, Genes & development.

[34]  Xiang-Dong Fu,et al.  Regulation of splicing by SR proteins and SR protein-specific kinases , 2013, Chromosoma.

[35]  Samy Lamouille,et al.  TGF-&bgr; signaling and epithelial–mesenchymal transition in cancer progression , 2013, Current opinion in oncology.

[36]  Jeff Porter,et al.  USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor , 2012, Nature Cell Biology.

[37]  P. ten Dijke,et al.  Key role for ubiquitin protein modification in TGFβ signal transduction , 2012, Upsala journal of medical sciences.

[38]  J. Baselga,et al.  USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma , 2012, Nature Medicine.

[39]  K. Lindsten,et al.  Ubiquitin-specific Protease 19 (USP19) Regulates Hypoxia-inducible Factor 1α (HIF-1α) during Hypoxia* , 2011, The Journal of Biological Chemistry.

[40]  Matthew West,et al.  ER Tubules Mark Sites of Mitochondrial Division , 2011, Science.

[41]  Xiaolu Yang,et al.  The USP19 Deubiquitinase Regulates the Stability of c-IAP1 and c-IAP2* , 2011, The Journal of Biological Chemistry.

[42]  P. Potter,et al.  Sudemycins, novel small molecule analogues of FR901464, induce alternative gene splicing. , 2011, ACS chemical biology.

[43]  S. Horinouchi,et al.  Identification of SAP155 as the target of GEX1A (Herboxidiene), an antitumor natural product. , 2011, ACS chemical biology.

[44]  Kohei Miyazono,et al.  TGFβ signalling: a complex web in cancer progression , 2010, Nature Reviews Cancer.

[45]  J. Martignetti,et al.  Emerging roles of Kruppel-like factor 6 and Kruppel-like factor 6 splice variant 1 in ovarian cancer progression and treatment. , 2009, The Mount Sinai journal of medicine, New York.

[46]  D. Komander The emerging complexity of protein ubiquitination. , 2009, Biochemical Society transactions.

[47]  K. Lindsten,et al.  The ER‐resident ubiquitin‐specific protease 19 participates in the UPR and rescues ERAD substrates , 2009, EMBO reports.

[48]  A. Moustakas,et al.  Regulating the stability of TGFβ receptors and Smads , 2009, Cell Research.

[49]  K. Nakayama,et al.  USP19 Deubiquitinating Enzyme Supports Cell Proliferation by Stabilizing KPC1, a Ubiquitin Ligase for p27Kip1 , 2008, Molecular and Cellular Biology.

[50]  L. Pearl,et al.  Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes , 2008, The EMBO Journal.

[51]  J. Massagué,et al.  TGFβ in Cancer , 2008, Cell.

[52]  J. Gaudet,et al.  Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO's activity. , 2007, Cancer cell.

[53]  P. ten Dijke,et al.  The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. , 2006, Cancer research.

[54]  C. Hill,et al.  Smad4 Dependency Defines Two Classes of Transforming Growth Factor β (TGF-β) Target Genes and Distinguishes TGF-β-Induced Epithelial-Mesenchymal Transition from Its Antiproliferative and Migratory Responses , 2005, Molecular and Cellular Biology.

[55]  K. Miyazono,et al.  Degradation of the Tumor Suppressor Smad4 by WW and HECT Domain Ubiquitin Ligases* , 2005, Journal of Biological Chemistry.

[56]  J. Wanders,et al.  Semi-physiological model describing the hematological toxicity of the anti-cancer agent indisulam , 2005, Investigational New Drugs.

[57]  Hiroshi Kimura,et al.  Manipulation of Alternative Splicing by a Newly Developed Inhibitor of Clks* , 2004, Journal of Biological Chemistry.

[58]  P. Dijke,et al.  New insights into TGF-β–Smad signalling , 2004 .

[59]  J. Massagué,et al.  Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus , 2003, Cell.

[60]  N. Borgese,et al.  KDEL and KKXX retrieval signals appended to the same reporter protein determine different trafficking between endoplasmic reticulum, intermediate compartment, and Golgi complex. , 2003, Molecular biology of the cell.

[61]  R. Derynck,et al.  Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Massagué,et al.  How cells read TGF-β signals , 2000, Nature Reviews Molecular Cell Biology.

[63]  S. Hokari,et al.  Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: Roles of transforming growth factor (TGF)‐β and bone morphogenetic protein (BMP) , 2000, The Anatomical record.

[64]  J. Massagué,et al.  Ubiquitin-dependent degradation of TGF-β-activated Smad2 , 1999, Nature Cell Biology.

[65]  Jeffrey L. Wrana,et al.  A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation , 1999, Nature.

[66]  Kohei Miyazono,et al.  TGF-β signalling from cell membrane to nucleus through SMAD proteins , 1997, Nature.