The Big Picture: Imaging of the Global Geospace Environment by the TWINS Mission

Encircling our planet at distances of 2.5 to 8 Earth radii is a dynamic plasma population known as the ring current (RC). During geomagnetic storms, the solar wind's interaction with Earth's magnetic field pumps petaJoules of energy into the RC, energizing and transporting particles. To measure the global geospace response, RC imaging is performed by capturing energetic neutral atoms (ENAs) created by charge exchange between geospace ions and the neutral exosphere. The H exosphere is itself imaged via its geocoronal Lyman‐α glow. Two Wide‐angle Imaging Neutral‐atom Spectrometers (TWINS) is a stereoscopic ENA and Lyman‐α imaging mission that has recorded the deep minimum of solar cycle (SC) 23 and the moderate maximum of SC 24, observing geospace conditions ranging from utterly quiet to major storms. This review covers TWINS studies of the geospace response published during 2013 to 2017. Stereo ENA imaging has revealed new dimensionality and structure of RC ions. Continuous coverage by two imagers has allowed monitoring storms from start to finish. Deconvolution of the low‐altitude signal has extended ENA analysis and revealed causal connections between the trapped and precipitating ion populations. ENA‐based temperature and composition analyses have been refined, validated, and applied to an unprecedented sequence of solar activity changes in SC 23 and SC 24. Geocoronal imaging has revealed a surprising amount of time variability and structure in the neutral H exosphere, driven by both Sun and solar wind. Global models have been measurably improved. Routine availability of simultaneous in situ measurements has fostered huge leaps forward in the areas of ENA validation and cross‐scale studies.

[1]  nasa,et al.  Solar and Space Physics: A Science for a Technological Society , 2019 .

[2]  B. Anderson,et al.  Magnetosphere dynamics during the 14 November 2012 storm inferred from TWINS, AMPERE, Van Allen Probes, and BATS-R-US–CRCM , 2018 .

[3]  A. Keesee A Review of Dawn‐Dusk Asymmetries Observed Using the TWINS Mission of Opportunity , 2017 .

[4]  J. Goldstein,et al.  Low‐Altitude Emission of Energetic Neutral Atoms: Multiple Interactions and Energy Loss , 2017 .

[5]  E. Scime,et al.  The Effect of Storm Driver and Intensity on Magnetospheric Ion Temperatures , 2017 .

[6]  M. Liemohn,et al.  Storm time equatorial magnetospheric ion temperature derived from TWINS ENA flux , 2017 .

[7]  H. Fahr,et al.  The response of the H geocorona between 3 and 8 R e to geomagnetic disturbances studied using TWINS stereo Lyman- α data , 2017 .

[8]  G. Reeves,et al.  Cross‐scale observations of the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS , 2017 .

[9]  J. Westlake,et al.  The Low‐Energy Neutral Imager (LENI) , 2016, Journal of geophysical research. Space physics.

[10]  D. Mccomas,et al.  Global images of trapped ring current ions during main phase of 17 March 2015 geomagnetic storm as observed by TWINS , 2016 .

[11]  J. Goldstein,et al.  Analytical estimate for low‐altitude ENA emissivity , 2016 .

[12]  S. Ma,et al.  Tomographic reconstruction of storm time RC ion distribution from ENA images on board multiple spacecraft , 2015 .

[13]  D. Mccomas,et al.  First joint in situ and global observations of the medium‐energy oxygen and hydrogen in the inner magnetosphere , 2015 .

[14]  G. Reeves,et al.  Multipoint observations of the open‐closed field line boundary as observed by the Van Allen Probes and geostationary satellites during the 14 November 2012 geomagnetic storm , 2015 .

[15]  H. Fahr,et al.  Terrestrial exospheric hydrogen density distributions under solar minimum and solar maximum conditions observed by the TWINS stereo mission , 2015 .

[16]  E. Scime,et al.  Database of ion temperature maps during geomagnetic storms , 2015, Earth and space science.

[17]  M. Fok,et al.  TWINS stereoscopic imaging of multiple peaks in the ring current , 2015 .

[18]  E. Delmonico Extending twins composition analysis of oxygen and hydrogen , 2015 .

[19]  A. Keesee,et al.  Regions of ion energization observed during the Galaxy‐15 substorm with TWINS , 2014 .

[20]  Tsugunobu Nagai,et al.  The Comprehensive Inner Magnetosphere‐Ionosphere Model , 2014 .

[21]  D. Mccomas,et al.  Superposed epoch analyses of ion temperatures during CME- and CIR/HSS-driven storms , 2014 .

[22]  M. Fok,et al.  First results using TWINS‐derived ion temperature boundary conditions in CRCM , 2014 .

[23]  M. Fok,et al.  Large magnetic storms as viewed by TWINS: A study of the differences in the medium energy ENA composition , 2014 .

[24]  J. Borovsky Feedback of the Magnetosphere , 2014, Science.

[25]  W. Lotko Coupling and Feedback in the Stormtime Magnetosphere-Ionosphere-Thermosphere Interaction (Invited) , 2013 .

[26]  R. Skoug,et al.  Global view of inner magnetosphere composition during storm time , 2013 .

[27]  David G. Sibeck,et al.  Science Objectives and Rationale for the Radiation Belt Storm Probes Mission , 2012, Space Science Reviews.

[28]  D. Mccomas,et al.  Five Years of Stereo Magnetospheric Imaging by TWINS , 2013 .

[29]  E. Grimes,et al.  Comparison of TWINS and THEMIS observations of proton pitch angle distributions in the ring current during the 29 May 2010 geomagnetic storm , 2013 .

[30]  M. Liemohn,et al.  The impact of geocoronal density on ring current development , 2013 .

[31]  D. Bazell,et al.  Local‐time‐dependent low‐altitude ion spectra deduced from TWINS ENA images , 2013 .

[32]  D. Mccomas,et al.  Oxygen‐hydrogen differentiated observations from TWINS: The 22 July 2009 storm , 2013 .

[33]  M. Gruntman,et al.  Observations of exosphere variations during geomagnetic storms , 2013 .

[34]  Alex Glocer,et al.  CRCM + BATS‒R‒US two‒way coupling , 2013 .

[35]  H. Fahr,et al.  Exospheric hydrogen density distributions for equinox and summer solstice observed with TWINS1/2 during solar minimum , 2013 .

[36]  B. Anderson,et al.  On the Relation between Electric Fields in the Inner Magnetosphere, Ring Current, Auroral Conductance, and Plasmapause Motion , 2013 .

[37]  M. Fok,et al.  Comparative analysis of low‐altitude ENA emissions in two substorms , 2013 .

[38]  D. Mccomas,et al.  Statistical Correlation of TWINS Low-Altitude Emission with Stormtime Solar Wind Pressure and Sym-H , 2012 .

[39]  D. Mccomas,et al.  TWINS energetic neutral atom observations of local‐time‐dependent ring current anisotropy , 2012 .

[40]  E. Grimes,et al.  Evolution of CIR storm on 22 July 2009 , 2012 .

[41]  E. Scime,et al.  Inner magnetosphere convection and magnetotail structure of hot ions imaged by ENA during a HSS-driven storm , 2012 .

[42]  J. Goldstein,et al.  Latitudinal anisotropy in ring current energetic neutral atoms , 2012 .

[43]  D. Mccomas,et al.  Two Wide‐Angle Imaging Neutral‐Atom Spectrometers and Interstellar Boundary Explorer energetic neutral atom imaging of the 5 April 2010 substorm , 2012 .

[44]  H. Fahr,et al.  The TWINS exospheric neutral H-density distribution under solar minimum conditions , 2011 .

[45]  G. Tóth,et al.  Rapid rebuilding of the outer radiation belt , 2011 .

[46]  M. Gruntman,et al.  Experimental study of exospheric hydrogen atom distributions by Lyman-alpha detectors on the TWINS mission , 2011 .

[47]  D. Mccomas,et al.  Remote observations of ion temperatures in the quiet time magnetosphere , 2011 .

[48]  D. Mccomas,et al.  Ring current dynamics in moderate and strong storms: Comparative analysis of TWINS and IMAGE/HENA data with the Comprehensive Ring Current Model , 2010 .

[49]  E. Grimes,et al.  Global observations of ring current dynamics during corotating interaction region–driven geomagnetic storms in 2008 , 2010 .

[50]  R. Skoug,et al.  Evolution of low-altitude and ring current ENA emissions from a moderate magnetospheric storm: Continuous and simultaneous TWINS observations , 2010 .

[51]  D. Bazell,et al.  Comparison of TWINS images of low-altitude emission of energetic neutral atoms with DMSP precipitating ion fluxes , 2010 .

[52]  H. Fahr,et al.  3-D-geocoronal hydrogen density derived from TWINS Ly-α-data , 2010 .

[53]  J. Goldstein,et al.  TWINS Observations of the 22 July 2009 Storm , 2009 .

[54]  M. Gruntman,et al.  Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX) , 2009, Science.

[55]  C. Pollock,et al.  Remote global‐scale observations of intense low‐altitude ENA emissions during the Halloween geomagnetic storm of 2003 , 2009 .

[56]  C. Holmlund,et al.  The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of-Opportunity , 2008 .

[57]  U. Auster,et al.  First Results from the THEMIS Mission , 2008 .

[58]  Vassilis Angelopoulos,et al.  The THEMIS Mission , 2008 .

[59]  E. Scime,et al.  Remote Measurements of Ion Temperatures in the Terrestrial Magnetotail , 2007 .

[60]  J. Goldstein Plasmasphere Response: Tutorial and Review of Recent Imaging Results , 2007 .

[61]  J. Borovsky,et al.  Differences between CME‐driven storms and CIR‐driven storms , 2006 .

[62]  Y. Kasahara,et al.  Corotating solar wind streams and recurrent geomagnetic activity: A review , 2006 .

[63]  H. Fahr,et al.  The TWINS-LAD mission: Observations of terrestrial Lyman-α fluxes , 2006 .

[64]  J. Weygand,et al.  Equatorial distributions of the plasma sheet ions, their electric and magnetic drifts, and magnetic fields under different interplanetary magnetic field Bz conditions , 2006 .

[65]  J. Wanliss,et al.  High-resolution global storm index: Dst versus SYM-H , 2006 .

[66]  R. Skoug,et al.  Storm‐time plasma signatures observed by IMAGE/MENA and comparison with a global physics‐based model , 2005 .

[67]  P. Brandt,et al.  Proton temperatures in the ring current from ENA images and in situ measurements , 2005 .

[68]  P. Brandt,et al.  Observations of energetic neutral oxygen by IMAGE/HENA and Geotail/EPIC , 2005 .

[69]  N. Tsyganenko,et al.  Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms , 2005 .

[70]  P. Brandt,et al.  Dynamics of ring current ions as obtained from IMAGE HENA and MENA ENA images , 2004 .

[71]  M. Grande,et al.  Multiple discrete-energy ion features in the inner magnetosphere: 9 February 1998, event , 2004 .

[72]  N. Østgaard,et al.  Observations of non‐conjugate theta aurora , 2003 .

[73]  J. Burch The First two Years of Image , 2003 .

[74]  Edmond C. Roelof,et al.  Global imaging of O+ from IMAGE/HENA , 2003 .

[75]  R. Wolf,et al.  Global ena Image Simulations , 2003 .

[76]  J. Borovsky,et al.  Delivery of cold, dense plasma sheet material into the near‐Earth region , 2003 .

[77]  H. Cane,et al.  A survey of interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002 , 2003 .

[78]  T. Mukai,et al.  Tail plasma sheet models derived from Geotail particle data , 2003 .

[79]  P. Brandt,et al.  IMAGE/high-energy energetic neutral atom: Global energetic neutral atom imaging of the plasma sheet and ring current during substorms , 2002 .

[80]  Edmond C. Roelof,et al.  Global IMAGE/HENA observations of the ring current: Examples of rapid response to IMF and ring current‐plasmasphere interaction , 2002 .

[81]  M. Fok,et al.  Global ENA observations of the storm mainphase ring current: Implications for skewed electric fields in the inner magnetosphere , 2002 .

[82]  J. Kline,et al.  Remote ion temperature measurements of Earth's magnetosphere: Medium energy neutral atom (MENA) images , 2002 .

[83]  J. L. Burch,et al.  Magnetospheric imaging: Promise to reality , 2001 .

[84]  S. Barabash,et al.  Energetic neutral atom imaging at low altitudes from the Swedish microsatellite Astrid: Extraction of the equatorial ion distribution , 2001 .

[85]  Edmond C. Roelof,et al.  Energetic neutral atom imaging at low altitudes from the Swedish microsatellite Astrid: Observations at low (≤10 keV) energies , 2001 .

[86]  R. Spiro,et al.  Comprehensive computational model of Earth's ring current , 2001 .

[87]  D. Mitchell,et al.  Initial ion equatorial pitch angle distributions from medium and high energy neutral atom images obtained by IMAGE , 2001 .

[88]  J. Green,et al.  Views of Earth's magnetosphere with the image satellite. , 2001, Science.

[89]  D. Weimer,et al.  An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event , 2001 .

[90]  D. Baker,et al.  Multiple discrete‐energy ion features in the inner magnetosphere: Observations and simulations , 2000 .

[91]  A. Skinner,et al.  Extraction of ion distributions from magnetospheric ENA and EUV images , 2000 .

[92]  Wolfgang Baumjohann,et al.  The terrestrial ring current: Origin, formation, and decay , 1999 .

[93]  I. Daglis,et al.  Two-step development of geomagnetic storms , 1998 .

[94]  J. Borovsky,et al.  The superdense plasma sheet: Plasmaspheric origin, solar wind origin, or ionospheric origin? , 1997 .

[95]  A. Jorgensen,et al.  First energetic neutral atom images from Polar , 1997 .

[96]  Christopher T. Russell,et al.  A new functional form to study the solar wind control of the magnetopause size and shape , 1997 .

[97]  M. Fujimoto,et al.  Solar wind control of density and temperature in the near‐Earth plasma sheet: WIND/GEOTAIL collaboration , 1997 .

[98]  J. Birn,et al.  Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit , 1997 .

[99]  Y. Kamide,et al.  Statistical nature of geomagnetic storms , 1997 .

[100]  L. Yin,et al.  Electromagnetic proton cyclotron instability: Interactions with magnetospheric protons , 1995 .

[101]  B. Tsurutani,et al.  Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle , 1995 .

[102]  R. Hodges,et al.  Monte Carlo simulation of the terrestrial hydrogen exosphere , 1994 .

[103]  Russell A. Howard,et al.  The solar cycle variation of coronal mass ejections and the solar wind mass flux , 1994 .

[104]  J. Gosling The solar flare myth , 1993 .

[105]  M. Kivelson,et al.  Contributions of the low-latitude boundary layer to the finite width magnetotail convection model , 1993 .

[106]  B. Barraclough,et al.  Magnetospheric plasma analyzer: Initial three‐spacecraft observations from geosynchronous orbit , 1993 .

[107]  I. Daglis,et al.  AMPTE/CCE CHEM observations of the energetic ion population at geosynchronous altitudes , 1993 .

[108]  A. Nagy,et al.  Lifetime of ring current particles due to coulomb collisions in the plasmasphere , 1991 .

[109]  S. Krimigis,et al.  Recent findings on angular distributions of dayside ring current energetic ions , 1990 .

[110]  L. Kistler,et al.  Energy spectra of the major ion species in the ring current during geomagnetic storms , 1989 .

[111]  G. Gloeckler,et al.  Ring current development during the great geomagnetic storm of February 1986 , 1988 .

[112]  B. Tsurutani,et al.  Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979) , 1988 .

[113]  S. Krimigis,et al.  Evolution of the ring current during two geomagnetic storms , 1987 .

[114]  E. Roelof Energetic neutral atom image of a storm-time ring current , 1987 .

[115]  John D. Craven,et al.  Geocoronal imaging with Dynamics Explorer , 1986 .

[116]  E. Roelof,et al.  Energetic neutral atoms (E ∼ 50 keV) from the ring current: IMP 7/8 and ISEE 1 , 1985 .

[117]  H. Garcia,et al.  Anisotropy characteristics of geomagnetically trapped ions , 1985 .

[118]  L. Fisk,et al.  Shock acceleration of energetic particles in corotating interaction regions in the solar wind , 1980 .

[119]  S. Wu,et al.  Dynamic MHD modeling of solar wind corotating stream interaction regions observed by Pioneer 10 and 11 , 1978 .

[120]  T. Potemra,et al.  The amplitude distribution of field-aligned currents at northern high latitudes observed by TRIAD. Interim report , 1975 .

[121]  L. Burlaga,et al.  Interplanetary streams and their interaction with the earth , 1975 .

[122]  R. MacQueen,et al.  Mass ejections from the Sun: A view from Skylab , 1974 .

[123]  Norbert Sckopke,et al.  A general relation between the energy of trapped particles and the disturbance field near the Earth , 1966 .

[124]  W. E. Francis,et al.  The Variation of the Neutral Atmospheric Properties with Local Time and Solar Activity from 100 to 10,000 km , 1966 .

[125]  T. Yonezawa Theory of formation of the ionosphere , 1966 .

[126]  S. Chapman,et al.  THE MAIN PHASE OF GREAT MAGNETIC STORMS , 1963 .

[127]  J. H. Piddington A Hydromagnetic Theory of Geomagnetic Storms , 1962 .

[128]  A. Dalgarno Range and Energy Loss , 1962 .

[129]  J. Dungey Interplanetary Magnetic Field and the Auroral Zones , 1961 .

[130]  S. Singer Structure of the Earth's Exosphere , 1960 .

[131]  T. Gold Motions in the magnetosphere of the Earth , 1959 .

[132]  G. Stuart Satellite-Measured Radiation , 1959 .

[133]  G. Griffing,et al.  Energy per ion pair for electron and proton beams in atomic hydrogen , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[134]  S. Singer a New Model of Magnetic Storms and Aurorae (abstract) , 1957 .

[135]  S. Chapman,et al.  The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth , 1931 .