CONSTRAINING SPACETIME TORSION WITH THE MOON, MERCURY AND LAGEOS

We consider an extension of Einstein General Relativity where, beside the Riemann curvature tensor, we suppose the presence of a torsion tensor. Using a parametrized theory based on symmetry arguments, we report on some results concerning the constraints that can be put on torsion parameters by studying the orbits of a test body in the solar system.

[1]  K. Hayashi,et al.  New General Relativity , 1979 .

[2]  E. C. Pavlis,et al.  A confirmation of the general relativistic prediction of the Lense–Thirring effect , 2004, Nature.

[3]  G. Bellettini,et al.  Constraining spacetime torsion with LAGEOS , 2011, 1101.2791.

[4]  F. Hehl,et al.  Spin and the structure of space-time , 1973 .

[5]  Rt Moses,et al.  50th International Astronautical Congress, Amsterdam, October 1999 , 1999 .

[6]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[7]  M. Nakahara Geometry, Topology and Physics , 2018 .

[8]  P. Tortora,et al.  A test of general relativity using radio links with the Cassini spacecraft , 2003, Nature.

[9]  Erwin Schrödinger,et al.  Space-time structure , 1951 .

[10]  E. Cartan Sur les variétés à connexion affine et la théorie de la relativité généralisée. (première partie) , 1923 .

[11]  The Srní lectures on non-integrable geometries with torsion , 2006, math/0606705.

[12]  The Geodesics of Metric Connections with Vectorial Torsion , 2003, math/0309087.

[13]  W. D. Sitter On Einstein's Theory of Gravitation and its Astronomical Consequences , 1916 .

[14]  Serkan Cabi,et al.  Constraining Torsion with Gravity Probe B , 2006, gr-qc/0608121.

[15]  Steve Matousek,et al.  The Juno New Frontiers mission , 2005 .

[16]  D. Vokrouhlický,et al.  Testing general relativity with the BepiColombo radio science experiment , 2002 .

[17]  Roberto Tauraso,et al.  Constraining spacetime torsion with the Moon and Mercury , 2011, 1101.2789.

[18]  F. Hehl,et al.  General Relativity with Spin and Torsion: Foundations and Prospects , 1976 .