Genarris 2.0: A random structure generator for molecular crystals

Genarris is an open-source Python package for generating random molecular crystal structures with physical constraints for seeding crystal structure prediction algorithms and training machine learning models. Here we present a new version of the code, containing several major improvements. An MPI-based parallelization scheme has been implemented, which facilitates the seamless sequential execution of user-defined workflows. A new method for estimating the unit cell volume based on the single molecule structure has been developed using a machine-learned model trained on experimental structures. A new algorithm has been implemented for generating crystal structures with molecules occupying special Wyckoff positions. A new hierarchical structure check procedure has been developed to detect unphysical close contacts efficiently and accurately. New intermolecular distance settings have been implemented for strong hydrogen bonds. To demonstrate these new features, we study two specific cases: benzene and glycine. For all polymorphs, the final pool either contained the experimental structure, or structures with similar lattice parameters, symmetry, and packing motifs.

[1]  H. Ammon,et al.  A New Atom/Functional Group Volume Additivity Data Base for the Calculation of the Crystal Densities of C, H, N, O and F‐Containing Compounds , 1998 .

[2]  M Gastegger,et al.  wACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials. , 2017, The Journal of chemical physics.

[3]  J. Facelli,et al.  Crystal Structure Prediction from First Principles: The Crystal Structures of Glycine. , 2015, Chemical physics letters.

[4]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[5]  Sarah L Price,et al.  Predicting crystal structures of organic compounds. , 2014, Chemical Society reviews.

[6]  Sarah L Price,et al.  Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. , 2010, Physical chemistry chemical physics : PCCP.

[7]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[8]  C. Ye,et al.  New Atom/Group Volume Additivity Method to Compensate for the Impact of Strong Hydrogen Bonding on Densities of Energetic Materials , 2008 .

[9]  Masahito S. Uchiyama,et al.  Polymorphs of Rubrene Crystal Grown from Solution , 2010 .

[10]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[11]  E. Boldyreva,et al.  Polymorphism of glycine thermodynamic aspects. Part I. Relative stability of the polymorphs , 2003 .

[12]  A. Bondi van der Waals Volumes and Radii , 1964 .

[13]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Bruno C. Hancock,et al.  Harnessing Cloud Architecture for Crystal Structure Prediction Calculations , 2018, Crystal Growth & Design.

[16]  A. Gavezzotti,et al.  The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and of solid-state organic reactivity , 1983 .

[17]  Álvaro Vázquez-Mayagoitia,et al.  GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction. , 2018, Journal of chemical theory and computation.

[18]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[19]  Alvaro Vazquez-Mayagoitia,et al.  Genarris: Random generation of molecular crystal structures and fast screening with a Harris approximation. , 2018, The Journal of chemical physics.

[20]  Michele Ceriotti,et al.  Large-Scale Computational Screening of Molecular Organic Semiconductors Using Crystal Structure Prediction , 2018, Chemistry of Materials.

[21]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[22]  Mario A. Storti,et al.  MPI for Python: Performance improvements and MPI-2 extensions , 2008, J. Parallel Distributed Comput..

[23]  G. Maggiora,et al.  Molecular similarity in medicinal chemistry. , 2014, Journal of medicinal chemistry.

[24]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  G. Day,et al.  Static and lattice vibrational energy differences between polymorphs , 2015 .

[26]  Jan Hermann,et al.  First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. , 2017, Chemical reviews.

[27]  G. Langlet,et al.  International Tables for Crystallography , 2002 .

[28]  Babak Hassibi,et al.  On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.

[29]  Many-body dispersion interactions in molecular crystal polymorphism. , 2012, Angewandte Chemie.

[30]  Jan Kroon,et al.  TRANSFERABLE AB INITIO INTERMOLECULAR POTENTIALS. 2. VALIDATION AND APPLICATION TO CRYSTAL STRUCTURE PREDICTION , 1999 .

[31]  H. Wondratschek,et al.  International Tables for Crystallography, Volume A1 , 2005 .

[32]  David M Rogers,et al.  Overcoming the minimum image constraint using the closest point search. , 2016, Journal of molecular graphics & modelling.

[33]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[34]  Robin Taylor,et al.  Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii , 1996 .

[35]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[36]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[37]  John E. Anthony,et al.  Effects of polymorphism on charge transport in organic semiconductors , 2009 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  C. Pantelides,et al.  Ab initio crystal structure prediction. II. Flexible molecules , 2007 .

[40]  James A. Chisholm,et al.  COMPACK: a program for identifying crystal structure similarity using distances , 2005 .

[41]  V. Bertolasi,et al.  Predicting hydrogen-bond strengths from acid-base molecular properties. The pK(a) slide rule: toward the solution of a long-lasting problem. , 2009, Accounts of chemical research.

[42]  Farren Curtis,et al.  GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction. , 2018, Journal of chemical theory and computation.

[43]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[44]  A. Burger,et al.  On the polymorphism of pharmaceuticals and other molecular crystals. II , 1979 .

[45]  B. M. Fulk MATH , 1992 .

[46]  Julio C. Facelli,et al.  Crystal Structure Prediction (CSP) of Flexible Molecules using Parallel Genetic Algorithms with a Standard Force Field , 2011 .

[47]  J. Bernstein,et al.  Facts and fictions about polymorphism. , 2015, Chemical Society reviews.

[48]  A. Tkatchenko,et al.  First-principles stability ranking of molecular crystal polymorphs with the DFT+MBD approach. , 2018, Faraday discussions.

[49]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[50]  David H. Case,et al.  Convergence Properties of Crystal Structure Prediction by Quasi-Random Sampling , 2015, Journal of chemical theory and computation.

[51]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[52]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[53]  J. Bernstein,et al.  Disappearing Polymorphs Revisited , 2015, Angewandte Chemie.

[54]  Robin Taylor,et al.  IsoStar: A library of information about nonbonded interactions , 1997, J. Comput. Aided Mol. Des..

[55]  Constantinos C. Pantelides,et al.  Ab initio crystal structure prediction—I. Rigid molecules , 2005, J. Comput. Chem..

[56]  Gastone Gilli,et al.  The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory , 2009 .

[57]  Alireza Khorshidi,et al.  Amp: A modular approach to machine learning in atomistic simulations , 2016, Comput. Phys. Commun..

[58]  Stefano de Gironcoli,et al.  Structural evolution of amino acid crystals under stress from a non-empirical density functional , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[59]  G. U. Kulkarni,et al.  Probing the hydrogen bond through experimental charge densities , 2003 .

[60]  J. Bauer,et al.  Ritonavir: An Extraordinary Example of Conformational Polymorphism , 2001, Pharmaceutical Research.

[61]  Alán Aspuru-Guzik,et al.  Understanding polymorphism in organic semiconductor thin films through nanoconfinement. , 2014, Journal of the American Chemical Society.

[62]  Luis Fernández Pacios,et al.  ARVOMOL/CONTOUR: Molecular Surface Areas and Volumes on Personal Computers , 1994, Comput. Chem..