Numerical integration in statistical decision-theoretic methods for robust design optimization

The Bayes principle from statistical decision theory provides a conceptual framework for quantifying uncertainties that arise in robust design optimization. The difficulty with exploiting this framework is computational, as it leads to objective and constraint functions that must be evaluated by numerical integration. Using a prototypical robust design optimization problem, this study explores the computational cost of multidimensional integration (computing expectation) and its interplay with optimization algorithms. It concludes that straightforward application of standard off-the-shelf optimization software to robust design is prohibitively expensive, necessitating adaptive strategies and the use of surrogates.

[1]  F. Downton,et al.  Introduction to Mathematical Statistics , 1959 .

[2]  G. Geoffrey Vining,et al.  Taguchi's parameter design: a panel discussion , 1992 .

[3]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[4]  Sean P. Kenny,et al.  Needs and Opportunities for Uncertainty- Based Multidisciplinary Design Methods for Aerospace Vehicles , 2002 .

[5]  Donald R. Jones,et al.  A Data-Analytic Approach to Bayesian Global Optimization , 1997 .

[6]  Layne T. Watson,et al.  A Fully Distribute Parallel Global Search Algorithm , 2001, PPSC.

[7]  Bernard Grossman,et al.  Response Surface Models Combining Linear and Euler Aerodynamics for Supersonic Transport Design , 1999 .

[8]  W. Cheney,et al.  Numerical analysis: mathematics of scientific computing (2nd ed) , 1991 .

[9]  T Haftka Raphael,et al.  Multidisciplinary aerospace design optimization: survey of recent developments , 1996 .

[10]  Christopher M. Siefert,et al.  Model-Assisted Pattern Search Methods for Optimizing Expensive Computer Simulations , 2002 .

[11]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[12]  Jerome Sacks,et al.  Computer Experiments for Quality Control by Parameter Design , 1990 .

[13]  S. Nash,et al.  Numerical methods and software , 1990 .

[14]  Ilya M. Sobol,et al.  A Primer for the Monte Carlo Method , 1994 .

[15]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .

[16]  Serge Miguet,et al.  ParList: A Parallel Data Structure for Dynamic Load Balancing , 1998, J. Parallel Distributed Comput..

[17]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[18]  D. Dennis,et al.  SDO : A Statistical Method for Global Optimization , 1997 .

[19]  P. A. Newman,et al.  Optimization with variable-fidelity models applied to wing design , 1999 .

[20]  Donald R. Jones,et al.  Global versus local search in constrained optimization of computer models , 1998 .

[21]  L. Tierney,et al.  Approximate methods for assessing influence and sensitivity in Bayesian analysis , 1989 .

[22]  Lorenz T. Biegler,et al.  Large-Scale Optimization with Applications : Part II: Optimal Design and Control , 1997 .

[23]  Tomás F. Pena,et al.  Parallel complete remeshing for adaptive schemes , 2005, Int. J. Comput. Sci. Eng..

[24]  B. Grossman,et al.  Variable-complexity response surface approximations for wing structural weight in HSCT design , 1996 .

[25]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[26]  Virginia Torczon,et al.  Using approximations to accelerate engineering design optimization , 1998 .

[27]  Douglas O. Stanley,et al.  Approximation model building and multidisciplinary design optimization using response surface methods , 1996 .

[28]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[29]  C. T. Kelley,et al.  Modifications of the direct algorithm , 2001 .

[30]  Dianne P. O'Leary Multidimensional integration: partition and conquer , 2004 .

[31]  V. Torczon,et al.  From Evolutionary Operation to Parallel Direct Search : Pattern Search Algorithms for Numerical Optimization , 1998 .

[32]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[33]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[34]  Bernard Grossman,et al.  A Coarse-Grained Parallel Variable-Complexity Multidisciplinary Optimization Paradigm , 1996, Int. J. High Perform. Comput. Appl..

[35]  Bing Li,et al.  Laplace expansion for posterior densities of nonlinear functions of parameters , 1992 .

[36]  Luc Huyse,et al.  Aerodynamic shape optimization of two-dimensional airfoils under uncertain conditions , 2001 .

[37]  Christopher M. Siefert,et al.  Model-Assisted Pattern Search , 2000 .

[38]  M. Natalia On Managing the Use of Surrogates in General Nonlinear Optimization and MDO , 1998 .

[39]  T Watson Layne,et al.  Multidisciplinary Optimization of a Supersonic Transport Using Design of Experiments Theory and Response Surface Modeling , 1997 .

[40]  Gerald S. Rogers,et al.  Mathematical Statistics: A Decision Theoretic Approach , 1967 .

[41]  J. -F. M. Barthelemy,et al.  Approximation concepts for optimum structural design — a review , 1993 .

[42]  Robert V. Hogg,et al.  Introduction to Mathematical Statistics. , 1966 .

[43]  R. Roy A Primer on the Taguchi Method , 1990 .

[44]  Keshav Pingali,et al.  I-structures: data structures for parallel computing , 1986, Graph Reduction.

[45]  D. Dennis,et al.  A statistical method for global optimization , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[46]  Michael S. Eldred,et al.  Optimization Under Uncertainty Methods for Computational Shock Physics Applications , 2002 .

[47]  Robert Lewis,et al.  A trust region framework for managing approximation models in engineering optimization , 1996 .

[48]  J. Dennis,et al.  MANAGING APPROXIMATION MODELS IN OPTIMIZATION , 2007 .

[49]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[50]  Layne T. Watson,et al.  The Promise (and Reality) of Multidisciplinary Design Optimization , 1997 .

[51]  Francis Sullivan,et al.  The importance of importance sampling , 1999, Comput. Sci. Eng..

[52]  John E. Renaud,et al.  Adaptive experimental design for construction of response surface approximations , 2001 .

[53]  Robert Michael Lewis,et al.  Pattern Search Algorithms for Bound Constrained Minimization , 1999, SIAM J. Optim..

[54]  Virginia Torczon,et al.  Numerical Optimization Using Computer Experiments , 1997 .

[55]  V. Torczon,et al.  Why Pattern Search Works , 1998 .

[56]  Y. Wardi A stochastic steepest-descent algorithm , 1988 .

[57]  L. Watson,et al.  Reasonable Design Space Approach to Response Surface Approximation , 1999 .

[58]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[59]  Bernard Grossman,et al.  Distributed control parallelism in multidisciplinary aircraft design , 1999, Concurrency Practice and Experience.

[60]  I. P. Natanson Constructive function theory , 1964 .

[61]  J. Sacks,et al.  A system for quality improvement via computer experiments , 1991 .

[62]  John M. Blatt,et al.  Numerical quadrature in n dimensions , 1963, Comput. J..

[63]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[64]  Clifford A. Shaffer,et al.  Dynamic Data Structures for a Direct Search Algorithm , 2002, Comput. Optim. Appl..

[65]  F. B. Hildebrand,et al.  Introduction To Numerical Analysis , 1957 .

[66]  Bernard Grossman,et al.  Parallel Global Aircraft Configuration Design Space Exploration , 1999 .

[67]  Huyse Luc,et al.  Free-form airfoil shape optimization under uncertainty using maximum expected value and second-order second-moment strategies , 2001 .

[68]  Jerome Spanier,et al.  Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples , 1994, SIAM Rev..

[69]  Andrew Booker,et al.  Design and analysis of computer experiments , 1998 .

[70]  Shigeru Kusakabe,et al.  Reducing overhead in implementing fine-grain parallel data-structures of a dataflow language on off-the-shelf distributed-memory parallel computers , 1997, Proceedings of the Thirtieth Hawaii International Conference on System Sciences.

[71]  Gene Hou,et al.  Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations , 1999 .

[72]  Anthony A. Giunta,et al.  Aircraft Multidisciplinary Design Optimization using Design of Experiments Theory and Response Surface Modeling Methods , 1997 .

[73]  W. K. Anderson,et al.  First-Order Model Management With Variable-Fidelity Physics Applied to Multi-Element Airfoil Optimization , 2000 .

[74]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.